These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
69 related items for PubMed ID: 1155885
1. Cochlear potentials and oxygen associated with hypoxia. Lawrence M, Nuttali AL, Burgio PA. Ann Otol Rhinol Laryngol; 1975; 84(4 Pt 1):499-512. PubMed ID: 1155885 [Abstract] [Full Text] [Related]
3. Endocochlear potential and scala media oxygen tension during partial anoxia. Nuttall AL, Lawrence M. Am J Otolaryngol; 1980 Feb; 1(2):147-53. PubMed ID: 7446837 [Abstract] [Full Text] [Related]
4. Oxygen reserve and autoregulation in the cochlea. Lawrence M, Nuttall AL, Burgio PA. Acta Otolaryngol; 1977 Feb; 83(1-2):146-52. PubMed ID: 842313 [Abstract] [Full Text] [Related]
5. Generation mechanism of the negative endocochlear potential during early stage of anoxia. Kusakari J, Rokugo M, Kambayashi J, Arakawa E, Ohyama K, Hara A, Kawamoto K. ORL J Otorhinolaryngol Relat Spec; 1983 Feb; 45(4):195-202. PubMed ID: 6603600 [Abstract] [Full Text] [Related]
6. Direct visualization of living organ of Corti and studies of its extracellular fluids. Lawrence M. Laryngoscope; 1974 Oct; 84(10):1767-76. PubMed ID: 4418561 [No Abstract] [Full Text] [Related]
7. Effects of perilymphatic pressure, sodium nitroprusside, and bupivacaine on cochlear fluid pH of guinea pigs. Suzuki M, Kotani R. Acta Otolaryngol; 2015 Oct; 135(12):1219-24. PubMed ID: 26327567 [Abstract] [Full Text] [Related]
8. [Changes of cochlear electrical activities in early experimental hydrolabyrinth]. Wu DZ. Zhonghua Er Bi Yan Hou Ke Za Zhi; 1993 Oct; 28(1):8-10, 58. PubMed ID: 8352999 [Abstract] [Full Text] [Related]
9. Alterations in oxygenation of cochlear endolymph during loud sound exposure. Thorne PR, Nuttall AL. Acta Otolaryngol; 1989 Oct; 107(1-2):71-9. PubMed ID: 2929318 [Abstract] [Full Text] [Related]
10. Some observations on negative endocochlear potential during anoxia. Konishi T. Acta Otolaryngol; 1979 Oct; 87(5-6):506-16. PubMed ID: 463522 [Abstract] [Full Text] [Related]
11. Changes in cochlear function during acute endolymphatic hydrops development in guinea pigs. Brown DJ, Chihara Y, Curthoys IS, Wang Y, Bos M. Hear Res; 2013 Feb; 296():96-106. PubMed ID: 23270618 [Abstract] [Full Text] [Related]
12. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea. Fridberger A, van Maarseveen JT, Scarfone E, Ulfendahl M, Flock B, Flock A. Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967 [Abstract] [Full Text] [Related]
13. The changes in the endolymphatic oxygen concentration and cochlear potentials after short anoxia, hyperoxia, and hypercapnia. Prazma J, Fischer ND, Biggers WP, Ascher D. Otolaryngology; 1978 Oct; 86(4 Pt 1):ORL-622. PubMed ID: 112555 [No Abstract] [Full Text] [Related]
14. Mechanism of the production of the negative endocochlear DC potential in the guinea pig. Komune S, Huangfu M, Snow JB. Otolaryngol Head Neck Surg; 1983 Aug; 91(4):427-34. PubMed ID: 6415593 [Abstract] [Full Text] [Related]
15. Potassium ion conductance of the cochlear partition: differences between the chinchilla and guinea pig. Ikeda K, Morizono T. Hear Res; 1988 Jul 15; 34(2):193-6. PubMed ID: 3170361 [Abstract] [Full Text] [Related]