These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 11561667
1. Compensation of hand movement for patients by assistant force: relationship between human hand movement and robot arm motion. Bai O, Nakamura M, Shibasaki H. IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):302-7. PubMed ID: 11561667 [Abstract] [Full Text] [Related]
2. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients]. Dordević O, Popović MB, Kostić V. Srp Arh Celok Lek; 2005 Sep; 133(1-2):14-20. PubMed ID: 16053170 [Abstract] [Full Text] [Related]
3. A new project for rehabilitation and psychomotor disease analysis with virtual reality support. Rovetta A, Lorini F, Canina M. Stud Health Technol Inform; 1998 Sep; 50():180-5. PubMed ID: 10180537 [Abstract] [Full Text] [Related]
4. [Mental activity hand orthosis control using the EEG: a case study]. Pfurtscheller G, Müller G, Korisek G. Rehabilitation (Stuttg); 2002 Feb; 41(1):48-52. PubMed ID: 11830792 [Abstract] [Full Text] [Related]
5. Manual transport in Parkinson's disease. Hejduková B, Hosseini N, Johnels B, Ingvarsson PE, Steg G, Olsson T. Mov Disord; 2003 May; 18(5):565-72. PubMed ID: 12722171 [Abstract] [Full Text] [Related]
6. Learning and generation of goal-directed arm reaching from scratch. Kambara H, Kim K, Shin D, Sato M, Koike Y. Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565 [Abstract] [Full Text] [Related]
7. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study. Chang PH, Kang SH. J Neurosci Methods; 2010 May 30; 189(1):97-112. PubMed ID: 20298718 [Abstract] [Full Text] [Related]
8. Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Kurillo G, Zupan A, Bajd T. Clin Biomech (Bristol); 2004 Dec 30; 19(10):1014-21. PubMed ID: 15531051 [Abstract] [Full Text] [Related]
9. The effect of Parkinson's disease on the control of multi-segmental coordination. Bertram CP, Lemay M, Stelmach GE. Brain Cogn; 2005 Feb 30; 57(1):16-20. PubMed ID: 15629208 [Abstract] [Full Text] [Related]
10. Handle size as a task constraint in spoon-use movement in patients with Parkinson's disease. Ma HI, Hwang WJ, Chen-Sea MJ, Sheu CF. Clin Rehabil; 2008 Jun 30; 22(6):520-8. PubMed ID: 18511532 [Abstract] [Full Text] [Related]
11. What activates the human mirror neuron system during observation of artificial movements: bottom-up visual features or top-down intentions? Engel A, Burke M, Fiehler K, Bien S, Rösler F. Neuropsychologia; 2008 Jun 30; 46(7):2033-42. PubMed ID: 18339409 [Abstract] [Full Text] [Related]
12. The ability to assess muscular force in asymmetrical Parkinson's disease. Lafargue G, D'Amico A, Thobois S, Broussolle E, Sirigu A. Cortex; 2008 Jan 30; 44(1):82-9. PubMed ID: 18387534 [Abstract] [Full Text] [Related]
13. Robot-assisted adaptive training: custom force fields for teaching movement patterns. Patton JL, Mussa-Ivaldi FA. IEEE Trans Biomed Eng; 2004 Apr 30; 51(4):636-46. PubMed ID: 15072218 [Abstract] [Full Text] [Related]
14. Coordinated control of assistive robotic devices for activities of daily living tasks. Erol D, Sarkar N. IEEE Trans Neural Syst Rehabil Eng; 2008 Jun 30; 16(3):278-85. PubMed ID: 18586607 [Abstract] [Full Text] [Related]
15. Teleoperation for a ball-catching task with significant dynamics. Smith C, Bratt M, Christensen HI. Neural Netw; 2008 May 30; 21(4):604-20. PubMed ID: 18490137 [Abstract] [Full Text] [Related]
16. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study. Kamnik R, Bajd T. Med Eng Phys; 2007 Nov 30; 29(9):1019-29. PubMed ID: 17098459 [Abstract] [Full Text] [Related]
17. Prolonged practice is of scarce benefit in improving motor performance in Parkinson's disease. Agostino R, Currà A, Soldati G, Dinapoli L, Chiacchiari L, Modugno N, Pierelli F, Berardelli A. Mov Disord; 2004 Nov 30; 19(11):1285-93. PubMed ID: 15390058 [Abstract] [Full Text] [Related]
18. Evaluation of the simulation robot for mandibular movements with the patient-specific 3-dimensional plaster model and mandibular movement data: clinical application of the physical simulation robot. Ikawa T, Ogawa T, Shigeta Y, Hirabayashi R, Fukushima S, Otake Y, Hattori A, Suzuki N. Stud Health Technol Inform; 2008 Nov 30; 132():183-8. PubMed ID: 18391283 [Abstract] [Full Text] [Related]
19. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study. Maruishi M, Tanaka Y, Muranaka H, Tsuji T, Ozawa Y, Imaizumi S, Miyatani M, Kawahara J. Neuroimage; 2004 Apr 30; 21(4):1604-11. PubMed ID: 15050584 [Abstract] [Full Text] [Related]