These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
350 related items for PubMed ID: 11563492
1. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems. Mukherjee G, Samanta A. J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492 [Abstract] [Full Text] [Related]
2. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Smith PA, Glaser RM, Petrofsky JS, Underwood PD, Smith GB, Richard JJ. Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094 [Abstract] [Full Text] [Related]
3. Arm-crank propelled three-wheeled chair: physiological evaluation of the propulsion using one arm and both arm patterns. Mukherjee G, Samanta A. Int J Rehabil Res; 2004 Dec; 27(4):321-4. PubMed ID: 15572998 [Abstract] [Full Text] [Related]
4. Physical fitness training for wheelchair ambulation by the arm crank propulsion technique. Mukherjee G, Bhowmik P, Samanta A. Clin Rehabil; 2001 Apr; 15(2):125-32. PubMed ID: 11330757 [Abstract] [Full Text] [Related]
5. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. Beekman CE, Miller-Porter L, Schoneberger M. Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055 [Abstract] [Full Text] [Related]
6. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, Cooper RA. Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997 [Abstract] [Full Text] [Related]
11. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury. Nash MS, Koppens D, van Haaren M, Sherman AL, Lippiatt JP, Lewis JE. Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235 [Abstract] [Full Text] [Related]
12. Wheelchair charity: a useless benevolence in community-based rehabilitation. Mukherjee G, Samanta A. Disabil Rehabil; 2005 May 20; 27(10):591-6. PubMed ID: 16019868 [Abstract] [Full Text] [Related]
14. A neural net representation of experienced and nonexperienced users during manual wheelchair propulsion. Patterson P, Draper S. J Rehabil Res Dev; 1998 Jan 20; 35(1):43-51. PubMed ID: 9505252 [Abstract] [Full Text] [Related]
15. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion. Patterson P, Draper S. Biomed Sci Instrum; 1997 Jan 20; 33():477-81. PubMed ID: 9731406 [Abstract] [Full Text] [Related]
16. Filter frequency selection for manual wheelchair biomechanics. Cooper RA, DiGiovine CP, Boninger ML, Shimada SD, Koontz AM, Baldwin MA. J Rehabil Res Dev; 2002 Jan 20; 39(3):323-36. PubMed ID: 12173753 [Abstract] [Full Text] [Related]
18. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes. Mason BS, Van Der Woude LH, Tolfrey K, Lenton JP, Goosey-Tolfrey VL. Med Sci Sports Exerc; 2012 Jan 20; 44(1):126-34. PubMed ID: 21701409 [Abstract] [Full Text] [Related]
19. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output. Hintzy F, Tordi N. Clin Biomech (Bristol); 2004 May 20; 19(4):343-9. PubMed ID: 15109753 [Abstract] [Full Text] [Related]