These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 11566808
1. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Pantoja R, Sigg D, Blunck R, Bezanilla F, Heath JR. Biophys J; 2001 Oct; 81(4):2389-94. PubMed ID: 11566808 [Abstract] [Full Text] [Related]
2. Well-defined microapertures for ion channel biosensors. Halža E, Bro TH, Bilenberg B, Koçer A. Anal Chem; 2013 Jan 15; 85(2):811-5. PubMed ID: 23256755 [Abstract] [Full Text] [Related]
3. Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Rondelli V, Del Favero E, Brocca P, Fragneto G, Trapp M, Mauri L, Ciampa MG, Romani G, Braun CJ, Winterstein L, Schroeder I, Thiel G, Moroni A, Cantu' L. Biochim Biophys Acta Gen Subj; 2018 Aug 15; 1862(8):1742-1750. PubMed ID: 29753114 [Abstract] [Full Text] [Related]
4. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels. Quist AP, Chand A, Ramachandran S, Daraio C, Jin S, Lal R. Langmuir; 2007 Jan 30; 23(3):1375-80. PubMed ID: 17241061 [Abstract] [Full Text] [Related]
5. Reconstitution of ion channels in agarose-supported silicon orifices. Maurer JA, White VE, Dougherty DA, Nadeau JL. Biosens Bioelectron; 2007 May 15; 22(11):2577-84. PubMed ID: 17098413 [Abstract] [Full Text] [Related]
6. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. Zheng H, Lee S, Llaguno MC, Jiang QX. J Gen Physiol; 2016 Jan 15; 147(1):77-93. PubMed ID: 26712851 [Abstract] [Full Text] [Related]
7. [Reconstitution of large conductance calcium-activated potassium channels into artificial planar lipid bilayers]. Cheng J, Zeng XR, Tan XQ, Li PY, Wen J, Mao L, Yang Y. Sheng Li Xue Bao; 2017 Jun 25; 69(3):305-310. PubMed ID: 28638923 [Abstract] [Full Text] [Related]
8. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. Suzuki H, Tabata KV, Noji H, Takeuchi S. Biosens Bioelectron; 2007 Jan 15; 22(6):1111-5. PubMed ID: 16730973 [Abstract] [Full Text] [Related]
9. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S, Quigley EP, Crumrine DS. Biophys J; 1997 Nov 15; 73(5):2489-502. PubMed ID: 9370442 [Abstract] [Full Text] [Related]
10. Roles of bilayer material properties in function and distribution of membrane proteins. McIntosh TJ, Simon SA. Annu Rev Biophys Biomol Struct; 2006 Nov 15; 35():177-98. PubMed ID: 16689633 [Abstract] [Full Text] [Related]
11. Insulating tethered bilayer lipid membranes to study membrane proteins. Köper I. Mol Biosyst; 2007 Oct 15; 3(10):651-7. PubMed ID: 17882328 [Abstract] [Full Text] [Related]
12. A novel method for incorporation of ion channels into a planar phospholipid bilayer which allows solution changes on a millisecond timescale. Sitsapesan R, Montgomery RA, Williams AJ. Pflugers Arch; 1995 Aug 15; 430(4):584-9. PubMed ID: 7491286 [Abstract] [Full Text] [Related]
13. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Pérez G, Lagrutta A, Adelman JP, Toro L. Biophys J; 1994 Apr 15; 66(4):1022-7. PubMed ID: 7518702 [Abstract] [Full Text] [Related]
14. Reconstitution of isolated Ca(2+)-activated K+ channel proteins from basolateral membranes of rabbit colonocytes. Liu S, Dubinsky WP, Haddox MK, Schultz SG. Am J Physiol; 1991 Oct 15; 261(4 Pt 1):C713-7. PubMed ID: 1928331 [Abstract] [Full Text] [Related]
15. Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing. Straub B, Meyer E, Fromherz P. Nat Biotechnol; 2001 Feb 15; 19(2):121-4. PubMed ID: 11175724 [Abstract] [Full Text] [Related]
16. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder I, Thiel G. J Gen Physiol; 2018 Apr 02; 150(4):637-646. PubMed ID: 29487088 [Abstract] [Full Text] [Related]
17. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Proc Natl Acad Sci U S A; 2020 Nov 10; 117(45):27854-27861. PubMed ID: 33106430 [Abstract] [Full Text] [Related]
18. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Menestrina G, Mackman N, Holland IB, Bhakdi S. Biochim Biophys Acta; 1987 Nov 27; 905(1):109-17. PubMed ID: 2445378 [Abstract] [Full Text] [Related]
19. Fluorescence microscopy of piezo1 in droplet hydrogel bilayers. Jaggers OB, Ridone P, Martinac B, Baker MAB. Channels (Austin); 2019 Dec 27; 13(1):102-109. PubMed ID: 30885080 [Abstract] [Full Text] [Related]
20. Voltage-dependent formation of gramicidin channels in lipid bilayers. Sandblom J, Galvanovskis J, Jilderos B. Biophys J; 2001 Aug 27; 81(2):827-37. PubMed ID: 11463628 [Abstract] [Full Text] [Related] Page: [Next] [New Search]