These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
406 related items for PubMed ID: 11567000
1. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. Millman KL, Tavaré S, Dean D. J Bacteriol; 2001 Oct; 183(20):5997-6008. PubMed ID: 11567000 [Abstract] [Full Text] [Related]
2. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains. Zhang YX, Fox JG, Ho Y, Zhang L, Stills HF, Smith TF. Mol Biol Evol; 1993 Nov; 10(6):1327-42. PubMed ID: 8277858 [Abstract] [Full Text] [Related]
3. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. Pettersson B, Andersson A, Leitner T, Olsvik O, Uhlén M, Storey C, Black CM. J Bacteriol; 1997 Jul; 179(13):4195-205. PubMed ID: 9209033 [Abstract] [Full Text] [Related]
4. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Brunelle BW, Sensabaugh GF. Infect Immun; 2006 Jan; 74(1):578-85. PubMed ID: 16369014 [Abstract] [Full Text] [Related]
5. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. Kaltenboeck B, Kousoulas KG, Storz J. J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295 [Abstract] [Full Text] [Related]
6. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. Holland SM, Gaydos CA, Quinn TC. J Infect Dis; 1990 Oct; 162(4):984-7. PubMed ID: 2401796 [Abstract] [Full Text] [Related]
7. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Gaydos CA, Palmer L, Quinn TC, Falkow S, Eiden JJ. Int J Syst Bacteriol; 1993 Jul; 43(3):610-2. PubMed ID: 8347519 [Abstract] [Full Text] [Related]
9. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM. Nucleic Acids Res; 2000 Mar 15; 28(6):1397-406. PubMed ID: 10684935 [Abstract] [Full Text] [Related]
10. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene. Black CM, Tharpe JA, Russell H. Mol Cell Probes; 1992 Oct 15; 6(5):395-400. PubMed ID: 1361962 [Abstract] [Full Text] [Related]
11. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Moelleken K, Hegemann JH. Mol Microbiol; 2008 Jan 15; 67(2):403-19. PubMed ID: 18086188 [Abstract] [Full Text] [Related]
12. Prevalence and characterization of Chlamydia DNA in zoo animals in Japan. Kabeya H, Sato S, Maruyama S. Microbiol Immunol; 2015 Sep 15; 59(9):507-15. PubMed ID: 26215334 [Abstract] [Full Text] [Related]
13. Chlamydia trachomatis: when the virulence-associated genome backbone imports a prevalence-associated major antigen signature. Borges V, Cordeiro D, Salas AI, Lodhia Z, Correia C, Isidro J, Fernandes C, Rodrigues AM, Azevedo J, Alves J, Roxo J, Rocha M, Côrte-Real R, Vieira L, Borrego MJ, Gomes JP. Microb Genom; 2019 Nov 15; 5(11):. PubMed ID: 31697227 [Abstract] [Full Text] [Related]
14. Chlamydial disease--more than just abortion. Jones GE. Vet J; 1997 May 15; 153(3):249-51. PubMed ID: 9232115 [No Abstract] [Full Text] [Related]
15. Evidence for Chlamydia pneumoniae of non-human origin. Storey C, Lusher M, Yates P, Richmond S. J Gen Microbiol; 1993 Nov 15; 139(11):2621-6. PubMed ID: 8277245 [Abstract] [Full Text] [Related]
16. Sequence analysis of the major outer membrane protein gene of Chlamydia pneumoniae. Perez Melgosa M, Kuo CC, Campbell LA. Infect Immun; 1991 Jun 15; 59(6):2195-9. PubMed ID: 1840574 [Abstract] [Full Text] [Related]
17. Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. Meijer A, Morré SA, van den Brule AJ, Savelkoul PH, Ossewaarde JM. J Bacteriol; 1999 Aug 15; 181(15):4469-75. PubMed ID: 10419941 [Abstract] [Full Text] [Related]
18. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism. Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo C, Dean D. J Bacteriol; 2006 Jan 15; 188(1):275-86. PubMed ID: 16352844 [Abstract] [Full Text] [Related]
19. Detection of Chlamydia pneumoniae-specific antibodies binding to the VD2 and VD3 regions of the major outer membrane protein. Klein M, Kötz A, Bernardo K, Krönke M. J Clin Microbiol; 2003 May 15; 41(5):1957-62. PubMed ID: 12734234 [Abstract] [Full Text] [Related]
20. Remarkable sequence relatedness in the DNA encoding the major outer membrane protein of Chlamydia psittaci (koala type I) and Chlamydia pneumoniae. Girjes AA, Carrick FN, Lavin MF. Gene; 1994 Jan 28; 138(1-2):139-42. PubMed ID: 8125292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]