These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 11571591
1. Skeletal muscle energetics assessed by (31)P-NMR in prepubertal girls with a familial predisposition to obesity. Treuth MS, Butte NF, Herrick R. Int J Obes Relat Metab Disord; 2001 Sep; 25(9):1300-8. PubMed ID: 11571591 [Abstract] [Full Text] [Related]
2. Predictors of body fat gain in nonobese girls with a familial predisposition to obesity. Treuth MS, Butte NF, Sorkin JD. Am J Clin Nutr; 2003 Dec; 78(6):1212-8. PubMed ID: 14668285 [Abstract] [Full Text] [Related]
3. Relations of parental obesity status to physical activity and fitness of prepubertal girls. Treuth MS, Butte NF, Puyau M, Adolph A. Pediatrics; 2000 Oct; 106(4):E49. PubMed ID: 11015544 [Abstract] [Full Text] [Related]
4. Skeletal muscle metabolism in overweight and post-overweight women: an isometric exercise study using (31)P magnetic resonance spectroscopy. Newcomer BR, Larson-Meyer DE, Hunter GR, Weinsier RL. Int J Obes Relat Metab Disord; 2001 Sep; 25(9):1309-15. PubMed ID: 11571592 [Abstract] [Full Text] [Related]
5. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats. Chanseaume E, Bielicki G, Tardy AL, Renou JP, Freyssenet D, Boirie Y, Morio B. Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558 [Abstract] [Full Text] [Related]
6. A longitudinal study of fitness and activity in girls predisposed to obesity. Treuth MS, Butte NF, Adolph AL, Puyau MR. Med Sci Sports Exerc; 2004 Feb; 36(2):198-204. PubMed ID: 14767240 [Abstract] [Full Text] [Related]
7. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. Petersen SR, Gaul CA, Stanton MM, Hanstock CC. J Appl Physiol (1985); 1999 Dec; 87(6):2151-6. PubMed ID: 10601162 [Abstract] [Full Text] [Related]
8. Muscle metabolism and acid-base status during exercise in forearm work-related myalgia measured with 31P-MRS. Raymer GH, Green HJ, Ranney DA, Marsh GD, Thompson RT. J Appl Physiol (1985); 2009 Apr; 106(4):1198-206. PubMed ID: 19112160 [Abstract] [Full Text] [Related]
9. Bio-energetic impairment in human calf muscle in thyroid disorders: a 31P MRS study. Khushu S, Rana P, Sekhri T, Sripathy G, Tripathi RP. Magn Reson Imaging; 2010 Jun; 28(5):683-9. PubMed ID: 20332062 [Abstract] [Full Text] [Related]
10. A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA. NMR Biomed; 2006 Aug; 19(5):573-80. PubMed ID: 16642462 [Abstract] [Full Text] [Related]
11. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, Tušek Jelenc M, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M. NMR Biomed; 2014 Nov; 27(11):1346-52. PubMed ID: 25199902 [Abstract] [Full Text] [Related]
12. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. Yquel RJ, Arsac LM, Thiaudière E, Canioni P, Manier G. J Sports Sci; 2002 May; 20(5):427-37. PubMed ID: 12043832 [Abstract] [Full Text] [Related]
13. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS). Schocke MF, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A. Magn Reson Imaging; 2004 Jan; 22(1):109-15. PubMed ID: 14972400 [Abstract] [Full Text] [Related]
14. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD. J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885 [Abstract] [Full Text] [Related]
15. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P, Varshney A, Devi MM, Kumar P, Khushu S. Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477 [Abstract] [Full Text] [Related]
16. The influence of maximal aerobic power on recovery of skeletal muscle following anaerobic exercise. Cooke SR, Petersen SR, Quinney HA. Eur J Appl Physiol Occup Physiol; 1997 Aug; 75(6):512-9. PubMed ID: 9202947 [Abstract] [Full Text] [Related]
17. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MF. J Vasc Surg; 2006 May; 43(5):978-86. PubMed ID: 16678693 [Abstract] [Full Text] [Related]
18. [Magnetic resonance spectroscopy in fibromyalgia. A study of phosphate-31 spectra from skeletal muscles during rest and after exercise]. Jacobsen S, Jensen KE, Thomsen C, Danneskiold-Samsøe B, Henriksen O. Ugeskr Laeger; 1994 Nov 14; 156(46):6841-4. PubMed ID: 7839499 [Abstract] [Full Text] [Related]
19. Effect of circulatory occlusion on human muscle metabolism during exercise and recovery. Yoshida T, Watari H. Eur J Appl Physiol Occup Physiol; 1997 Nov 14; 75(3):200-5. PubMed ID: 9088837 [Abstract] [Full Text] [Related]
20. Metabolism of normal skeletal muscle during dynamic exercise to clinical fatigue: in vivo assessment by nuclear magnetic resonance spectroscopy. Wong R, Davies N, Marshall D, Allen P, Zhu G, Lopaschuk G, Montague T. Can J Cardiol; 1990 Nov 14; 6(9):391-5. PubMed ID: 2276074 [Abstract] [Full Text] [Related] Page: [Next] [New Search]