These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 11590222
1. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. Ikemoto A, Ohishi M, Sato Y, Hata N, Misawa Y, Fujii Y, Okuyama H. J Lipid Res; 2001 Oct; 42(10):1655-63. PubMed ID: 11590222 [Abstract] [Full Text] [Related]
2. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. Du C, Sato A, Watanabe S, Wu CZ, Ikemoto A, Ando K, Kikugawa K, Fujii Y, Okuyama H. Biol Pharm Bull; 2003 Jun; 26(6):766-70. PubMed ID: 12808283 [Abstract] [Full Text] [Related]
3. Dietary alpha-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane. Kim HK, Choi H. Lipids; 2001 Dec; 36(12):1331-6. PubMed ID: 11834085 [Abstract] [Full Text] [Related]
4. Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Ikemoto A, Nitta A, Furukawa S, Ohishi M, Nakamura A, Fujii Y, Okuyama H. Neurosci Lett; 2000 May 12; 285(2):99-102. PubMed ID: 10793236 [Abstract] [Full Text] [Related]
5. High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice. Umezawa M, Kogishi K, Tojo H, Yoshimura S, Seriu N, Ohta A, Takeda T, Hosokawa M. J Nutr; 1999 Feb 12; 129(2):431-7. PubMed ID: 10024623 [Abstract] [Full Text] [Related]
6. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Song JH, Miyazawa T. Atherosclerosis; 2001 Mar 12; 155(1):9-18. PubMed ID: 11223421 [Abstract] [Full Text] [Related]
7. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. Prostaglandins Leukot Essent Fatty Acids; 2013 Jan 12; 88(1):139-46. PubMed ID: 22515943 [Abstract] [Full Text] [Related]
8. Effect of n-3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Ikemoto A, Ohishi M, Hata N, Misawa Y, Fujii Y, Okuyama H. Lipids; 2000 Oct 12; 35(10):1107-15. PubMed ID: 11104017 [Abstract] [Full Text] [Related]
9. Regulatory effects of individual n-6 and n-3 polyunsaturated fatty acids on LDL transport in the rat. Spady DK. J Lipid Res; 1993 Aug 12; 34(8):1337-46. PubMed ID: 8105015 [Abstract] [Full Text] [Related]
10. Effects of diets enriched in n-6 or n-3 fatty acids on cholesterol metabolism in older rats chronically fed a cholesterol-enriched diet. Fukushima M, Ohhashi T, Ohno S, Saitoh H, Sonoyama K, Shimada K, Sekikawa M, Nakano M. Lipids; 2001 Mar 12; 36(3):261-6. PubMed ID: 11337981 [Abstract] [Full Text] [Related]
11. Effect of replacing a high linoleate oil with a low linoleate, high alpha-linolenate oil, as compared with supplementing EPA or DHA, on reducing lipid mediator production in rat polymorphonuclear leukocytes. Ohhashi K, Takahashi T, Watanabe S, Kobayashi T, Okuyama H, Hata N, Misawa Y. Biol Pharm Bull; 1998 Jun 12; 21(6):558-64. PubMed ID: 9657037 [Abstract] [Full Text] [Related]
12. Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. Salem N, Moriguchi T, Greiner RS, McBride K, Ahmad A, Catalan JN, Slotnick B. J Mol Neurosci; 2001 Jun 12; 16(2-3):299-307; discussion 317-21. PubMed ID: 11478385 [Abstract] [Full Text] [Related]
14. Comparison of Dietary Oils with Different Polyunsaturated Fatty Acid n-3 and n-6 Content in the Rat Model of Cutaneous Wound Healing. Komprda T, Sladek Z, Sevcikova Z, Svehlova V, Wijacki J, Guran R, Do T, Lackova Z, Polanska H, Vrlikova L, Popelkova V, Michalek P, Zitka O, Buchtova M. Int J Mol Sci; 2020 Oct 24; 21(21):. PubMed ID: 33114430 [Abstract] [Full Text] [Related]
15. Dietary long-chain polyunsaturated fatty acids modify heart, kidney, and lung fatty acid composition in weanling rats. Suárez A, Faus MJ, Gil A. Lipids; 1996 Mar 24; 31(3):345-8. PubMed ID: 8900466 [Abstract] [Full Text] [Related]
16. Effect of dietary alpha-linolenic acid intake on incorporation of docosahexaenoic and arachidonic acids into plasma phospholipids of term infants. Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC. Lipids; 1996 Mar 24; 31 Suppl():S131-5. PubMed ID: 8729107 [Abstract] [Full Text] [Related]
17. Erythrocyte fatty acids of term infants fed either breast milk, standard formula, or formula supplemented with long-chain polyunsaturates. Makrides M, Neumann MA, Simmer K, Gibson RA. Lipids; 1995 Oct 24; 30(10):941-8. PubMed ID: 8538382 [Abstract] [Full Text] [Related]
18. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet. Gao F, Kim HW, Igarashi M, Kiesewetter D, Chang L, Ma K, Rapoport SI. Biochim Biophys Acta; 2011 Oct 24; 1811(7-8):484-9. PubMed ID: 21651989 [Abstract] [Full Text] [Related]
19. Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source. Nielsen FH, Penland JG. Nutr Neurosci; 2006 Oct 24; 9(1-2):105-12. PubMed ID: 16910176 [Abstract] [Full Text] [Related]
20. Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. Watkins BA, Li Y, Seifert MF. J Nutr Biochem; 2006 Apr 24; 17(4):282-9. PubMed ID: 16102959 [Abstract] [Full Text] [Related] Page: [Next] [New Search]