These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 11591148

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL, Mowat CG, Miles CS, Walkinshaw MD, Reid GA, Chapman SK.
    Biochemistry; 2003 Nov 18; 42(45):13160-9. PubMed ID: 14609326
    [Abstract] [Full Text] [Related]

  • 5. Role of His505 in the soluble fumarate reductase from Shewanella frigidimarina.
    Pankhurst KL, Mowat CG, Miles CS, Leys D, Walkinshaw MD, Reid GA, Chapman SK.
    Biochemistry; 2002 Jul 09; 41(27):8551-6. PubMed ID: 12093271
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mechanism of a soluble fumarate reductase from Shewanella frigidimarina: a theoretical study.
    Lucas MF, Ramos MJ.
    J Phys Chem B; 2006 Jun 01; 110(21):10550-6. PubMed ID: 16722766
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP, Thomas LM, Bobyk KD, Andi B, Cook PF, West AH.
    Biochemistry; 2012 Jan 31; 51(4):857-66. PubMed ID: 22243403
    [Abstract] [Full Text] [Related]

  • 12. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction.
    Tedeschi G, Ronchi S, Simonic T, Treu C, Mattevi A, Negri A.
    Biochemistry; 2001 Apr 17; 40(15):4738-44. PubMed ID: 11294641
    [Abstract] [Full Text] [Related]

  • 13. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH.
    Biochemistry; 1994 Mar 01; 33(8):2021-32. PubMed ID: 8117659
    [Abstract] [Full Text] [Related]

  • 14. Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase.
    Kim S, Kim CM, Son YJ, Choi JY, Siegenthaler RK, Lee Y, Jang TH, Song J, Kang H, Kaiser CA, Park HH.
    Nat Commun; 2018 Nov 19; 9(1):4867. PubMed ID: 30451826
    [Abstract] [Full Text] [Related]

  • 15. Tuning of functional heme reduction potentials in Shewanella fumarate reductases.
    Pessanha M, Rothery EL, Miles CS, Reid GA, Chapman SK, Louro RO, Turner DL, Salgueiro CA, Xavier AV.
    Biochim Biophys Acta; 2009 Feb 19; 1787(2):113-20. PubMed ID: 19081388
    [Abstract] [Full Text] [Related]

  • 16. Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase).
    Mowat CG, Beaudoin I, Durley RC, Barton JD, Pike AD, Chen ZW, Reid GA, Chapman SK, Mathews FS, Lederer F.
    Biochemistry; 2000 Mar 28; 39(12):3266-75. PubMed ID: 10727218
    [Abstract] [Full Text] [Related]

  • 17. Structural and mechanistic mapping of a unique fumarate reductase.
    Taylor P, Pealing SL, Reid GA, Chapman SK, Walkinshaw MD.
    Nat Struct Biol; 1999 Dec 28; 6(12):1108-12. PubMed ID: 10581550
    [Abstract] [Full Text] [Related]

  • 18. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G, Sandalova T, Lohman K, Lindqvist Y, Rendina AR.
    Biochemistry; 1997 Apr 22; 36(16):4751-60. PubMed ID: 9125495
    [Abstract] [Full Text] [Related]

  • 19. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase.
    Lancaster CR, Gorss R, Haas A, Ritter M, Mäntele W, Simon J, Kröger A.
    Proc Natl Acad Sci U S A; 2000 Nov 21; 97(24):13051-6. PubMed ID: 11186225
    [Abstract] [Full Text] [Related]

  • 20. Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella.
    Paquete CM, Saraiva IH, Louro RO.
    Biochim Biophys Acta; 2014 Jun 21; 1837(6):717-25. PubMed ID: 24530355
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.