These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 11591363

  • 21. Transforming growth factor-beta-stimulated connective tissue growth factor expression during corneal myofibroblast differentiation.
    Folger PA, Zekaria D, Grotendorst G, Masur SK.
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2534-41. PubMed ID: 11581194
    [Abstract] [Full Text] [Related]

  • 22. The cxc chemokine cCAF stimulates differentiation of fibroblasts into myofibroblasts and accelerates wound closure.
    Feugate JE, Li Q, Wong L, Martins-Green M.
    J Cell Biol; 2002 Jan 07; 156(1):161-72. PubMed ID: 11781340
    [Abstract] [Full Text] [Related]

  • 23. The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction.
    Saxena A, Shinde AV, Haque Z, Wu YJ, Chen W, Su Y, Frangogiannis NG.
    J Mol Cell Cardiol; 2015 Dec 07; 89(Pt B):223-31. PubMed ID: 26542797
    [Abstract] [Full Text] [Related]

  • 24. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells.
    Lien SC, Usami S, Chien S, Chiu JJ.
    Cell Signal; 2006 Aug 07; 18(8):1270-8. PubMed ID: 16310342
    [Abstract] [Full Text] [Related]

  • 25. [Effects of hypoxia on the phenotype transformation of human dermal fibroblasts to myofibroblasts and the mechanism].
    Zhao B, Han F, Zhang W, Wang XJ, Zhang J, Yang FF, Shi JH, Su LL, Hu DH.
    Zhonghua Shao Shang Za Zhi; 2017 Jun 20; 33(6):368-373. PubMed ID: 28648041
    [Abstract] [Full Text] [Related]

  • 26. Fibroblast growth factor reversal of the corneal myofibroblast phenotype.
    Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK.
    Invest Ophthalmol Vis Sci; 2001 Oct 20; 42(11):2490-5. PubMed ID: 11581188
    [Abstract] [Full Text] [Related]

  • 27. Basic fibroblast growth factor antagonizes transforming growth factor-beta1-induced smooth muscle gene expression through extracellular signal-regulated kinase 1/2 signaling pathway activation.
    Kawai-Kowase K, Sato H, Oyama Y, Kanai H, Sato M, Doi H, Kurabayashi M.
    Arterioscler Thromb Vasc Biol; 2004 Aug 20; 24(8):1384-90. PubMed ID: 15217807
    [Abstract] [Full Text] [Related]

  • 28. Mechanical stretch modulates TGF-beta1 and alpha1(I) collagen expression in fetal human intestinal smooth muscle cells.
    Gutierrez JA, Perr HA.
    Am J Physiol; 1999 Nov 20; 277(5):G1074-80. PubMed ID: 10564114
    [Abstract] [Full Text] [Related]

  • 29. Knockdown of electron transfer flavoprotein β subunit reduced TGF-β-induced α-SMA mRNA expression but not COL1A1 in fibroblast-populated three-dimensional collagen gel cultures.
    Hirokawa S, Shimanuki T, Kitajima H, Nishimori Y, Shimosaka M.
    J Dermatol Sci; 2012 Dec 20; 68(3):179-86. PubMed ID: 23068445
    [Abstract] [Full Text] [Related]

  • 30. Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition.
    Liu J, Wang Y, Pan Q, Su Y, Zhang Z, Han J, Zhu X, Tang C, Hu D.
    J Dermatol Sci; 2012 Jan 20; 65(1):38-49. PubMed ID: 22041457
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Collagen type XVI expression is modulated by basic fibroblast growth factor and transforming growth factor-beta.
    Grässel S, Tan EM, Timpl R, Chu ML.
    FEBS Lett; 1998 Oct 02; 436(2):197-201. PubMed ID: 9781678
    [Abstract] [Full Text] [Related]

  • 33. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor.
    Agocha A, Lee HW, Eghbali-Webb M.
    J Mol Cell Cardiol; 1997 Aug 02; 29(8):2233-44. PubMed ID: 9281454
    [Abstract] [Full Text] [Related]

  • 34. Regulation of alpha-smooth muscle actin and CRBP-1 expression by retinoic acid and TGF-beta in cultured fibroblasts.
    Xu G, Bochaton-Piallat ML, Andreutti D, Low RB, Gabbiani G, Neuville P.
    J Cell Physiol; 2001 Jun 02; 187(3):315-25. PubMed ID: 11319755
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. The myofibroblast, cadherin, alpha smooth muscle actin and the collagen effect.
    Ehrlich HP, Allison GM, Leggett M.
    Cell Biochem Funct; 2006 Jun 02; 24(1):63-70. PubMed ID: 15584087
    [Abstract] [Full Text] [Related]

  • 37. Suppression of alpha smooth muscle actin expression by IFN-gamma in established myofibroblast cell lines.
    Tanaka K, Sano K, Nakano T, Yuba K, Kinoshita M.
    J Interferon Cytokine Res; 2007 Oct 02; 27(10):835-9. PubMed ID: 17970692
    [Abstract] [Full Text] [Related]

  • 38. Role of miR-145 in cardiac myofibroblast differentiation.
    Wang YS, Li SH, Guo J, Mihic A, Wu J, Sun L, Davis K, Weisel RD, Li RK.
    J Mol Cell Cardiol; 2014 Jan 02; 66():94-105. PubMed ID: 24001939
    [Abstract] [Full Text] [Related]

  • 39. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta.
    Lee BS, Nowak RA.
    J Clin Endocrinol Metab; 2001 Feb 02; 86(2):913-20. PubMed ID: 11158066
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.