These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 11591484

  • 1. Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells.
    Sage CL, Marcus DC.
    Hear Res; 2001 Oct; 160(1-2):1-9. PubMed ID: 11591484
    [Abstract] [Full Text] [Related]

  • 2. Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells.
    Sage CL, Marcus DC.
    J Membr Biol; 2002 Jan 15; 185(2):103-15. PubMed ID: 11891569
    [Abstract] [Full Text] [Related]

  • 3. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P, Liu J, Marcus DC.
    Hear Res; 1995 Apr 15; 84(1-2):19-29. PubMed ID: 7642451
    [Abstract] [Full Text] [Related]

  • 4. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells.
    Wangemann P.
    Hear Res; 1995 Oct 15; 90(1-2):149-57. PubMed ID: 8974992
    [Abstract] [Full Text] [Related]

  • 5. Immunological identification of an inward rectifier K+ channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats.
    Ando M, Takeuchi S.
    Cell Tissue Res; 1999 Oct 15; 298(1):179-83. PubMed ID: 10555552
    [Abstract] [Full Text] [Related]

  • 6. Inhibitory effect of erythromycin on ion transport by stria vascularis and vestibular dark cells.
    Liu J, Marcus DC, Kobayashi T.
    Acta Otolaryngol; 1996 Jul 15; 116(4):572-5. PubMed ID: 8831844
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.
    Wangemann P, Shen Z, Liu J.
    Hear Res; 1996 Oct 15; 100(1-2):201-10. PubMed ID: 8922995
    [Abstract] [Full Text] [Related]

  • 9. Computational model of vectorial potassium transport by cochlear marginal cells and vestibular dark cells.
    Quraishi IH, Raphael RM.
    Am J Physiol Cell Physiol; 2007 Jan 15; 292(1):C591-602. PubMed ID: 17005601
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
    Marcus DC, Wu T, Wangemann P, Kofuji P.
    Am J Physiol Cell Physiol; 2002 Feb 15; 282(2):C403-7. PubMed ID: 11788352
    [Abstract] [Full Text] [Related]

  • 12. Dietary K+ and Cl- independently regulate basolateral conductance in principal and intercalated cells of the collecting duct.
    Tomilin VN, Zaika O, Subramanya AR, Pochynyuk O.
    Pflugers Arch; 2018 Feb 15; 470(2):339-353. PubMed ID: 29134279
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Three-dimensional and ultrastructural relationships between intermediate cells and capillaries in the gerbil stria vascularis.
    Takeuchi S, Ando M, Sato T, Kakigi A.
    Hear Res; 2001 May 15; 155(1-2):103-12. PubMed ID: 11335080
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.