These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 11602688
1. Differential kinetics of transport of 2',3'-dideoxyinosine and adenosine via concentrative Na+ nucleoside transporter CNT2 cloned from rat blood-brain barrier. Li JY, Boado RJ, Pardridge WM. J Pharmacol Exp Ther; 2001 Nov; 299(2):735-40. PubMed ID: 11602688 [Abstract] [Full Text] [Related]
2. Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. Li JY, Boado RJ, Pardridge WM. J Cereb Blood Flow Metab; 2001 Aug; 21(8):929-36. PubMed ID: 11487728 [Abstract] [Full Text] [Related]
3. Transport of physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs by recombinant Escherichia coli nucleoside-H(+) cotransporter (NupC) produced in Xenopus laevis oocytes. Loewen SK, Yao SY, Slugoski MD, Mohabir NN, Turner RJ, Mackey JR, Weiner JH, Gallagher MP, Henderson PJ, Baldwin SA, Cass CE, Young JD. Mol Membr Biol; 2004 Aug; 21(1):1-10. PubMed ID: 14668133 [Abstract] [Full Text] [Related]
4. Nucleoside transporter expression and function in cultured mouse astrocytes. Peng L, Huang R, Yu AC, Fung KY, Rathbone MP, Hertz L. Glia; 2005 Oct; 52(1):25-35. PubMed ID: 15892125 [Abstract] [Full Text] [Related]
5. Transport of adenosine by recombinant purine- and pyrimidine-selective sodium/nucleoside cotransporters from rat jejunum expressed in Xenopus laevis oocytes. Yao SY, Ng AM, Ritzel MW, Gati WP, Cass CE, Young JD. Mol Pharmacol; 1996 Dec; 50(6):1529-35. PubMed ID: 8967974 [Abstract] [Full Text] [Related]
7. Mechanism of nucleoside uptake in rat placenta and induction of placental CNT2 in experimental diabetes. Nishimura T, Chishu T, Tomi M, Nakamura R, Sato K, Kose N, Sai Y, Nakashima E. Drug Metab Pharmacokinet; 2012 Dec; 27(4):439-46. PubMed ID: 22354287 [Abstract] [Full Text] [Related]
8. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. Huber-Ruano I, Pinilla-Macua I, Torres G, Casado FJ, Pastor-Anglada M. J Cell Physiol; 2010 Nov; 225(2):620-30. PubMed ID: 20506327 [Abstract] [Full Text] [Related]
9. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD. Mol Membr Biol; 1998 Nov; 15(4):203-11. PubMed ID: 10087507 [Abstract] [Full Text] [Related]
10. In vivo evidence for carrier-mediated efflux transport of 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. Takasawa K, Terasaki T, Suzuki H, Sugiyama Y. J Pharmacol Exp Ther; 1997 Apr; 281(1):369-75. PubMed ID: 9103519 [Abstract] [Full Text] [Related]
11. Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system. Schaner ME, Wang J, Zhang L, Su SF, Gerstin KM, Giacomini KM. J Pharmacol Exp Ther; 1999 Jun; 289(3):1487-91. PubMed ID: 10336543 [Abstract] [Full Text] [Related]
12. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. Isakovic AJ, Abbott NJ, Redzic ZB. J Neurochem; 2004 Jul; 90(2):272-86. PubMed ID: 15228584 [Abstract] [Full Text] [Related]
13. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ. Markovic I, Segal M, Djuricic B, Redzic Z. Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975 [Abstract] [Full Text] [Related]
14. Involvement of concentrative nucleoside transporter 1 in intestinal absorption of trifluorothymidine, a novel antitumor nucleoside, in rats. Okayama T, Yoshisue K, Kuwata K, Komuro M, Ohta S, Nagayama S. J Pharmacol Exp Ther; 2012 Feb; 340(2):457-62. PubMed ID: 22076553 [Abstract] [Full Text] [Related]
15. Functional expression of Na(+)-dependent nucleoside transport systems of rat intestine in isolated oocytes of Xenopus laevis. Demonstration that rat jejunum expresses the purine-selective system N1 (cif) and a second, novel system N3 having broad specificity for purine and pyrimidine nucleosides. Huang QQ, Harvey CM, Paterson AR, Cass CE, Young JD. J Biol Chem; 1993 Sep 25; 268(27):20613-9. PubMed ID: 7690759 [Abstract] [Full Text] [Related]
16. Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs. Pardridge WM, Yoshikawa T, Kang YS, Miller LP. J Pharmacol Exp Ther; 1994 Jan 25; 268(1):14-8. PubMed ID: 8301550 [Abstract] [Full Text] [Related]
17. Contribution of an unidentified sodium-dependent nucleoside transport system to the uptake and cytotoxicity of anthracycline in mouse M5076 ovarian sarcoma cells. Nagai K, Nagasawa K, Koma M, Kihara Y, Fujimoto S. Biochem Pharmacol; 2006 Feb 28; 71(5):565-73. PubMed ID: 16376308 [Abstract] [Full Text] [Related]
18. Bile acids alter the subcellular localization of CNT2 (concentrative nucleoside cotransporter) and increase CNT2-related transport activity in liver parenchymal cells. Fernández-Veledo S, Huber-Ruano I, Aymerich I, Duflot S, Casado FJ, Pastor-Anglada M. Biochem J; 2006 Apr 15; 395(2):337-44. PubMed ID: 16390326 [Abstract] [Full Text] [Related]
19. Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier. Nagase K, Tomi M, Tachikawa M, Hosoya K. Biochim Biophys Acta; 2006 Jan 15; 1758(1):13-9. PubMed ID: 16487924 [Abstract] [Full Text] [Related]
20. Striking species difference in the contribution of concentrative nucleoside transporter 2 to nucleoside uptake between mouse and rat hepatocytes. Furihata T, Fukuchi Y, Iikura M, Hashizume M, Miyajima A, Nagai M, Chiba K. Antimicrob Agents Chemother; 2010 Jul 15; 54(7):3035-8. PubMed ID: 20421393 [Abstract] [Full Text] [Related] Page: [Next] [New Search]