These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 1166518
21. Active and passive shortening in voltage-clamped frog muscle fibres. Costantin LL, Taylor SR. J Physiol; 1971 Oct; 218 Suppl():13P-15P. PubMed ID: 5130605 [No Abstract] [Full Text] [Related]
22. The instantaneous elasticity of frog skeletal muscle fibres [proceedings]. Ford LE, Huxley AF, Simmons RM. J Physiol; 1976 Sep; 260(2):28P-29P. PubMed ID: 978520 [No Abstract] [Full Text] [Related]
23. The rising phase of the active state in single skeletal muscle fibres of the frog. Edman KA. Acta Physiol Scand; 1970 Jun; 79(2):167-73. PubMed ID: 5454881 [No Abstract] [Full Text] [Related]
24. Impedance of membrane and myoplasm during the action potential of frog muscle. Freygang WH, Gunn R. J Gen Physiol; 1973 Apr; 61(4):482-9. PubMed ID: 4540419 [Abstract] [Full Text] [Related]
25. Role of connectin in the length-tension relation of skeletal and cardiac muscles. Matsubara S, Maruyama K. Jpn J Physiol; 1977 Apr; 27(5):589-600. PubMed ID: 304933 [Abstract] [Full Text] [Related]
26. Is muscle force independent of sarcomere length between 2 and 3 microns? [proceedings]. Iwazumi T, Pollack GH, Keurs HE. J Physiol; 1977 Oct; 272(1):35P-37P. PubMed ID: 592138 [No Abstract] [Full Text] [Related]
27. Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibres. Julian FJ, Sollins MR, Moss RL. Proc R Soc Lond B Biol Sci; 1978 Jan 24; 200(1138):109-16. PubMed ID: 24220 [No Abstract] [Full Text] [Related]
28. Radial spread of activation in voltage-clamped frog muscle fibres. Costantin LL. Nihon Seirigaku Zasshi; 1972 Feb 24; 34(2):89. PubMed ID: 4537825 [No Abstract] [Full Text] [Related]
29. Effects of D20 on mechanical characteristics of frog single muscle fibres [proceedings]. Cecchi G, Colomo F, Lombardi V. J Physiol; 1979 Jul 24; 292():78P-79P. PubMed ID: 490414 [No Abstract] [Full Text] [Related]
30. Impedance of frog skeletal muscle fibers in various solutions. Valdiosera R, Clausen C, Eisenberg RS. J Gen Physiol; 1974 Apr 24; 63(4):460-91. PubMed ID: 4544879 [Abstract] [Full Text] [Related]
31. The time course of the latency relaxation as a function of the sarcomere length in frog and mammalian muscle. Bartels EM, Skydsgaard JM, Sten-Knudsen O. Acta Physiol Scand; 1979 Jun 24; 106(2):129-37. PubMed ID: 315692 [No Abstract] [Full Text] [Related]
32. [Increase in the time of conservation of contractility of glycerinated muscles exposed to subthreshhold concentrations of chemical agents]. Suzdal'skaia IP, Kiro MB. Tsitologiia; 1975 Jan 24; 17(1):50-4. PubMed ID: 1118902 [Abstract] [Full Text] [Related]
35. Fast and slow fibers in human muscles. Zimkin NV, Panov VG, Raikov VT. Neurosci Behav Physiol; 1973 Jan 24; 6(1):1-8. PubMed ID: 4763448 [No Abstract] [Full Text] [Related]
36. Time course of the active state in relation to muscle length and movement: a comparative study on skeletal muscle and myocardium. Edman KA, Nilsson E. Cardiovasc Res; 1971 Jul 24; Suppl 1():3-10. PubMed ID: 5143799 [No Abstract] [Full Text] [Related]
38. Analysis of the membrane capacity in frog muscle. Hodgkin AL, Nakajima S. J Physiol; 1972 Feb 24; 221(1):121-36. PubMed ID: 5016975 [Abstract] [Full Text] [Related]
39. Effect of stretching on the water-binding of muscle. Pócsik S, Práger P, Józsa M. Acta Biochim Biophys Acad Sci Hung; 1977 Feb 24; 12(1):77-82. PubMed ID: 868468 [Abstract] [Full Text] [Related]
40. Comparison of the sarcomere number adaptation in young and adult animals. Influence of tendon adaptation. Tardieu C, Tabary JC, Tabary C, Huet de la Tour E. J Physiol (Paris); 1977 Feb 24; 73(8):1045-55. PubMed ID: 615249 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]