These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 11673648

  • 1. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model.
    Bilston LE, Liu Z, Phan-Thien N.
    Biorheology; 2001; 38(4):335-45. PubMed ID: 11673648
    [Abstract] [Full Text] [Related]

  • 2. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M, van Dommelen JA, Peters GW, Wismans JS.
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [Abstract] [Full Text] [Related]

  • 3. Large deformation shear properties of liver tissue.
    Liu Z, Bilston LE.
    Biorheology; 2002; 39(6):735-42. PubMed ID: 12454439
    [Abstract] [Full Text] [Related]

  • 4. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour.
    Liu Z, Bilston L.
    Biorheology; 2000; 37(3):191-201. PubMed ID: 11026939
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The applicability of the time/temperature superposition principle to brain tissue.
    Peters GW, Meulman JH, Sauren AA.
    Biorheology; 1997; 34(2):127-38. PubMed ID: 9373395
    [Abstract] [Full Text] [Related]

  • 8. Frequency dependence of complex moduli of brain tissue using a fractional Zener model.
    Kohandel M, Sivaloganathan S, Tenti G, Darvish K.
    Phys Med Biol; 2005 Jun 21; 50(12):2799-805. PubMed ID: 15930603
    [Abstract] [Full Text] [Related]

  • 9. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE, Li G.
    Biomech Model Mechanobiol; 2007 Jul 21; 6(4):245-51. PubMed ID: 16941137
    [Abstract] [Full Text] [Related]

  • 10. Linear viscoelastic behavior of subcutaneous adipose tissue.
    Geerligs M, Peters GW, Ackermans PA, Oomens CW, Baaijens FP.
    Biorheology; 2008 Jul 21; 45(6):677-88. PubMed ID: 19065014
    [Abstract] [Full Text] [Related]

  • 11. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O, Lanir Y.
    J Biomech Eng; 2009 Mar 21; 131(3):031009. PubMed ID: 19154068
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH, Tanaka E, Van Eijden TM.
    J Biomech; 2007 Mar 21; 40(10):2330-4. PubMed ID: 17141788
    [Abstract] [Full Text] [Related]

  • 14. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S, Vezin P, Palierne JF.
    J Biomech; 2010 Mar 22; 43(5):927-32. PubMed ID: 19954778
    [Abstract] [Full Text] [Related]

  • 15. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE, Arruda EM, Grosh K.
    Biomech Model Mechanobiol; 2004 Sep 22; 3(1):56-65. PubMed ID: 15278837
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F, Tay TE, Li JZ, Nigen S, Lee PV, Chan HK.
    J Biomech Eng; 2006 Oct 22; 128(5):797-801. PubMed ID: 16995770
    [Abstract] [Full Text] [Related]

  • 18. A constitutive model for protein-based materials.
    Wu X, Levenston ME, Chaikof EL.
    Biomaterials; 2006 Oct 22; 27(30):5315-25. PubMed ID: 16815545
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.