These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 1167684

  • 1. Microrheology and light transmission of blood. IV. The kinetics of artificial red cell aggregation induced by Dextran.
    Volger E, Schmid-Schönbein H, Gosen Jv, Klose HJ, Kline KA.
    Pflugers Arch; 1975; 354(4):319-37. PubMed ID: 1167684
    [Abstract] [Full Text] [Related]

  • 2. Microrheology and light transmission of blood. III. The velocity of red cell aggregate formation.
    Schmid-Schönbein H, Kline KA, Heinich L, Volger E, Fischer T.
    Pflugers Arch; 1975; 354(4):299-317. PubMed ID: 1167683
    [Abstract] [Full Text] [Related]

  • 3. Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion in flow.
    Schmid-Schönbein H, Volger E, Klose HJ.
    Pflugers Arch; 1972; 333(2):140-55. PubMed ID: 5065509
    [No Abstract] [Full Text] [Related]

  • 4. Rheological studies on the kinetics of artificial red cell aggregation induced by dextrans.
    Volger E, Schmid-Schönbein H, Klose HJ.
    Bibl Anat; 1973; 11():83-90. PubMed ID: 4789095
    [No Abstract] [Full Text] [Related]

  • 5. Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation.
    Klose HJ, Volger E, Brechtelsbauer H, Heinich L, Schmid-Schönbein H.
    Pflugers Arch; 1972; 333(2):126-39. PubMed ID: 4538028
    [No Abstract] [Full Text] [Related]

  • 6. Rheology of erythrocyte suspensions: electrostatic factors in the dextran-mediated aggregation of erythrocytes.
    Brooks DE, Goodwin JW, Seaman GV.
    Biorheology; 1974 Jan; 11(1):69-77. PubMed ID: 4824529
    [No Abstract] [Full Text] [Related]

  • 7. Effect of low fibrinogen concentrations on the rheology of human blood in vitro.
    Blättler W, Straub PW, Jeanneret C, Horak GS.
    Am J Physiol; 1979 Mar; 236(3):H447-50. PubMed ID: 154846
    [Abstract] [Full Text] [Related]

  • 8. Comparative microrheology of blood: effect of desaggregation and cell fluidity on shear thinning of human and bovine blood.
    Schmid-Schönbein H, von Gosen J, Klose HJ.
    Biorheology; 1973 Dec; 10(4):545-51. PubMed ID: 4783686
    [No Abstract] [Full Text] [Related]

  • 9. The influence of dextran on the sedimentation behavior of human red cells: macro and micro studies.
    Meiselman HJ.
    Bibl Anat; 1969 Dec; 10():20-31. PubMed ID: 5407364
    [No Abstract] [Full Text] [Related]

  • 10. Comparison of new ultrasound index with laser reference and viscosity indexes for erythrocyte aggregation quantification.
    Rouffiac V, Peronneau P, Guglielmi JP, Del-Pino M, Lassau N, Levenson J.
    Ultrasound Med Biol; 2003 Jun; 29(6):789-99. PubMed ID: 12837495
    [Abstract] [Full Text] [Related]

  • 11. Comparison of rheological effects of isoviscous concentrations of dextran 40 and 150 upon erythrocyte aggregation and cell viscosity.
    Bygdeman S, Wells R.
    Bibl Anat; 1969 Jun; 10():16-9. PubMed ID: 5407357
    [No Abstract] [Full Text] [Related]

  • 12. The mechanism of the dextran-induced red blood cell aggregation.
    Pribush A, Zilberman-Kravits D, Meyerstein N.
    Eur Biophys J; 2007 Feb; 36(2):85-94. PubMed ID: 17091267
    [Abstract] [Full Text] [Related]

  • 13. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N, Riha P, Ivanov I.
    Clin Hemorheol Microcirc; 2010 Feb; 45(2-4):253-61. PubMed ID: 20675907
    [Abstract] [Full Text] [Related]

  • 14. Size determination of red blood cell aggregates induced by dextran using ultrasound backscattering phenomenon.
    Boynard M, Lelievre JC.
    Biorheology; 1990 Feb; 27(1):39-46. PubMed ID: 1694460
    [Abstract] [Full Text] [Related]

  • 15. Red cell aggregation in blood flow. I. New methods of quantification.
    Schmid-Schönbein H, Gallasch G, von Gosen J, Volger E, Klose HJ.
    Klin Wochenschr; 1976 Feb 15; 54(4):149-57. PubMed ID: 1256002
    [Abstract] [Full Text] [Related]

  • 16. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N, Riha P, Ivanov I, Gluhcheva Y.
    Clin Hemorheol Microcirc; 2011 Feb 15; 49(1-4):441-50. PubMed ID: 22214715
    [Abstract] [Full Text] [Related]

  • 17. [Quantification of the effects of fibrinolytic therapy upon the flow behavior of blood (author's transl)].
    Schmid-Schönbein H, Rieger H, Hess H.
    Klin Wochenschr; 1977 Feb 01; 55(3):111-9. PubMed ID: 834021
    [Abstract] [Full Text] [Related]

  • 18. Role of surface electric charge in red blood cell interactions.
    Jan KM, Chien S.
    J Gen Physiol; 1973 May 01; 61(5):638-54. PubMed ID: 4705641
    [Abstract] [Full Text] [Related]

  • 19. Aggregation of human RBC in binary dextran-PEG polymer mixtures.
    Neu B, Armstrong JK, Fisher TC, Meiselman HJ.
    Biorheology; 2001 May 01; 38(1):53-68. PubMed ID: 11381165
    [Abstract] [Full Text] [Related]

  • 20. Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules.
    Bishop JJ, Popel AS, Intaglietta M, Johnson PC.
    Am J Physiol Heart Circ Physiol; 2002 Nov 01; 283(5):H1985-96. PubMed ID: 12384477
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.