These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 11681383

  • 1. Inner hair cell response patterns: implications for low-frequency hearing.
    Cheatham MA, Dallos P.
    J Acoust Soc Am; 2001 Oct; 110(4):2034-44. PubMed ID: 11681383
    [Abstract] [Full Text] [Related]

  • 2. Low-frequency modulation of inner hair cell and organ of Corti responses in the guinea pig cochlea.
    Cheatham MA, Dallos P.
    Hear Res; 1997 Jun; 108(1-2):191-212. PubMed ID: 9213131
    [Abstract] [Full Text] [Related]

  • 3. The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea.
    Kössl M, Russell IJ.
    J Neurosci; 1992 May; 12(5):1575-86. PubMed ID: 1578256
    [Abstract] [Full Text] [Related]

  • 4. The dynamic range of inner hair cell and organ of Corti responses.
    Cheatham MA, Dallos P.
    J Acoust Soc Am; 2000 Mar; 107(3):1508-20. PubMed ID: 10738805
    [Abstract] [Full Text] [Related]

  • 5. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL.
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The influence of transient asphyxia on receptor potentials in inner hair cells of the guinea pig cochlea.
    Russell IJ, Cowley EM.
    Hear Res; 1983 Sep; 11(3):373-84. PubMed ID: 6630089
    [Abstract] [Full Text] [Related]

  • 11. Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig.
    Nuttall AL, Dolan DF.
    J Acoust Soc Am; 1993 Jan; 93(1):390-400. PubMed ID: 8423256
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A, Oghalai JS.
    J Physiol; 2017 Jul 01; 595(13):4549-4561. PubMed ID: 28382742
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The response of hair cells in the basal turn of the guinea-pig cochlea to tones.
    Cody AR, Russell IJ.
    J Physiol; 1987 Feb 01; 383():551-69. PubMed ID: 3656135
    [Abstract] [Full Text] [Related]

  • 18. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F, Cao C, Huang C, Li Q, Li T, Liu X, Zhang S, Ceng X, Wang C.
    Cell Mol Biol (Noisy-le-grand); 2018 Sep 30; 64(12):2-10. PubMed ID: 30301494
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C, Woodland PC.
    J Acoust Soc Am; 1994 Jan 30; 95(1):331-42. PubMed ID: 8120244
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.