These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
264 related items for PubMed ID: 11683641
1. Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with noncovalent artificial pigments. Aharoni A, Ottolenghi M, Sheves M. Biochemistry; 2001 Nov 06; 40(44):13310-9. PubMed ID: 11683641 [Abstract] [Full Text] [Related]
2. A covalent link between the chromophore and the protein backbone of bacteriorhodopsin is not required for forming a photochemically active pigment analogous to the wild type. Friedman N, Druckmann S, Lanyi J, Needleman R, Lewis A, Ottolenghi M, Sheves M. Biochemistry; 1994 Mar 01; 33(8):1971-6. PubMed ID: 8117653 [Abstract] [Full Text] [Related]
3. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 01; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
4. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I, Friedman N, Sheves M, Ottolenghi M. Biochemistry; 1995 Sep 19; 34(37):12059-65. PubMed ID: 7547944 [Abstract] [Full Text] [Related]
5. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA, Wallace BA. Biochim Biophys Acta; 1991 Dec 09; 1070(2):313-20. PubMed ID: 1764449 [Abstract] [Full Text] [Related]
6. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G, Steinmüller S, Berndsen T, Buss V, Gärtner W. Biochemistry; 1998 Jun 02; 37(22):8227-32. PubMed ID: 9609719 [Abstract] [Full Text] [Related]
7. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U, Asato AE, Sheves M. Biochemistry; 2005 Jun 14; 44(23):8479-85. PubMed ID: 15938637 [Abstract] [Full Text] [Related]
8. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y, Friedman N, Sheves M, Ottolenghi M. Biochemistry; 1997 Apr 08; 36(14):4135-48. PubMed ID: 9100007 [Abstract] [Full Text] [Related]
9. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Brown LS, Gat Y, Sheves M, Yamazaki Y, Maeda A, Needleman R, Lanyi JK. Biochemistry; 1994 Oct 11; 33(40):12001-11. PubMed ID: 7918419 [Abstract] [Full Text] [Related]
10. Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin. Friedman N, Ottolenghi M, Sheves M. Biochemistry; 2003 Sep 30; 42(38):11281-8. PubMed ID: 14503878 [Abstract] [Full Text] [Related]
11. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin. Aharoni A, Hou B, Friedman N, Ottolenghi M, Rousso I, Ruhman S, Sheves M, Ye T, Zhong Q. Biochemistry (Mosc); 2001 Nov 30; 66(11):1210-9. PubMed ID: 11743866 [Abstract] [Full Text] [Related]
12. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H, Shimono K, Sudo Y, Iwamoto M, Shichida Y, Kamo N. Biochemistry; 2001 Aug 07; 40(31):9238-46. PubMed ID: 11478891 [Abstract] [Full Text] [Related]
13. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
14. Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study. Kelemen L, Galajda P, Száraz S, Ormos P. Biophys J; 1999 Apr 26; 76(4):1951-8. PubMed ID: 10096893 [Abstract] [Full Text] [Related]
15. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin. Zhou F, Windemuth A, Schulten K. Biochemistry; 1993 Mar 09; 32(9):2291-306. PubMed ID: 8443172 [Abstract] [Full Text] [Related]
16. Local-access model for proton transfer in bacteriorhodopsin. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biochemistry; 1998 Mar 17; 37(11):3982-93. PubMed ID: 9521720 [Abstract] [Full Text] [Related]
17. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
18. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin. Zhang YN, el-Sayed MA, Bonet ML, Lanyi JK, Chang M, Ni B, Needleman R. Proc Natl Acad Sci U S A; 1993 Feb 15; 90(4):1445-9. PubMed ID: 8434004 [Abstract] [Full Text] [Related]
19. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Kandori H. Biochim Biophys Acta; 2004 Jul 23; 1658(1-2):72-9. PubMed ID: 15282177 [Abstract] [Full Text] [Related]
20. A large photolysis-induced pKa increase of the chromophore counterion in bacteriorhodopsin: implications for ion transport mechanisms of retinal proteins. Braiman MS, Dioumaev AK, Lewis JR. Biophys J; 1996 Feb 23; 70(2):939-47. PubMed ID: 8789111 [Abstract] [Full Text] [Related] Page: [Next] [New Search]