These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 11683644
1. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base. Vogel R, Fan GB, Siebert F, Sheves M. Biochemistry; 2001 Nov 06; 40(44):13342-52. PubMed ID: 11683644 [Abstract] [Full Text] [Related]
2. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study. Fahmy K, Siebert F, Sakmar TP. Biochemistry; 1994 Nov 22; 33(46):13700-5. PubMed ID: 7947779 [Abstract] [Full Text] [Related]
3. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition. Zvyaga TA, Min KC, Beck M, Sakmar TP. J Biol Chem; 1993 Mar 05; 268(7):4661-7. PubMed ID: 8444840 [Abstract] [Full Text] [Related]
4. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. Zvyaga TA, Fahmy K, Sakmar TP. Biochemistry; 1994 Aug 16; 33(32):9753-61. PubMed ID: 8068654 [Abstract] [Full Text] [Related]
5. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Jäger F, Fahmy K, Sakmar TP, Siebert F. Biochemistry; 1994 Sep 13; 33(36):10878-82. PubMed ID: 7916209 [Abstract] [Full Text] [Related]
6. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ. J Biol Chem; 2004 Nov 12; 279(46):48102-11. PubMed ID: 15322129 [Abstract] [Full Text] [Related]
7. The role of Glu181 in the photoactivation of rhodopsin. Lüdeke S, Beck M, Yan EC, Sakmar TP, Siebert F, Vogel R. J Mol Biol; 2005 Oct 21; 353(2):345-56. PubMed ID: 16169009 [Abstract] [Full Text] [Related]
8. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin. Standfuss J, Zaitseva E, Mahalingam M, Vogel R. J Mol Biol; 2008 Jun 27; 380(1):145-57. PubMed ID: 18511075 [Abstract] [Full Text] [Related]
9. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin. Furutani Y, Shichida Y, Kandori H. Biochemistry; 2003 Aug 19; 42(32):9619-25. PubMed ID: 12911303 [Abstract] [Full Text] [Related]
11. Conformation analysis of glu181 and ser186 in the metarhodopsin I state. Ishiguro M. Chembiochem; 2004 Sep 06; 5(9):1204-9. PubMed ID: 15368571 [Abstract] [Full Text] [Related]
15. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Nishimura S, Kandori H, Nakagawa M, Tsuda M, Maeda A. Biochemistry; 1997 Jan 28; 36(4):864-70. PubMed ID: 9020785 [Abstract] [Full Text] [Related]
18. Two protonation switches control rhodopsin activation in membranes. Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R. Proc Natl Acad Sci U S A; 2008 Nov 18; 105(46):17795-800. PubMed ID: 18997017 [Abstract] [Full Text] [Related]
19. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Pan D, Mathies RA. Biochemistry; 2001 Jul 03; 40(26):7929-36. PubMed ID: 11425321 [Abstract] [Full Text] [Related]