These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 11684366
1. Bioactivation and toxicity in vitro of HCFC-123 and HCFC-141b: role of cytochrome P450. Zanovello A, Ferrara R, Tolando R, Bortolato S, White IN, Manno M. Toxicol Lett; 2001 Oct 15; 124(1-3):139-52. PubMed ID: 11684366 [Abstract] [Full Text] [Related]
2. Bioactivation to free radicals and cytotoxicity of 1,1-dichloro-1-fluoroethane (HCFC-141b). Zanovello A, Tolando R, Ferrara R, Bortolato S, Manno M. Xenobiotica; 2001 Feb 15; 31(2):99-112. PubMed ID: 11407538 [Abstract] [Full Text] [Related]
3. Bioactivation and cytotoxicity of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) in isolated rat hepatocytes. Ferrara R, Zanovello A, Bortolato S, White IN, Manno M. Pharmacol Toxicol; 2001 Apr 15; 88(4):192-7. PubMed ID: 11322177 [Abstract] [Full Text] [Related]
4. Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by phenobarbital- and pyridine-induced rat liver microsomal cytochrome P450. Tolando R, Ferrara R, Eldirdiri NI, Albores A, King LJ, Manno M. Xenobiotica; 1996 Apr 15; 26(4):425-35. PubMed ID: 9173683 [Abstract] [Full Text] [Related]
5. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R, Tolando R, King LJ, Manno M. Toxicol Appl Pharmacol; 1997 Apr 15; 143(2):420-8. PubMed ID: 9144458 [Abstract] [Full Text] [Related]
6. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1. Urban G, Speerschneider P, Dekant W. Chem Res Toxicol; 1994 Apr 15; 7(2):170-6. PubMed ID: 8199305 [Abstract] [Full Text] [Related]
7. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice. Dekant W, Assmann M, Urban G. Toxicol Appl Pharmacol; 1995 Dec 15; 135(2):200-7. PubMed ID: 8545828 [Abstract] [Full Text] [Related]
8. Toxicology of chlorofluorocarbon replacements. Dekant W. Environ Health Perspect; 1996 Mar 15; 104 Suppl 1(Suppl 1):75-83. PubMed ID: 8722112 [Abstract] [Full Text] [Related]
9. Reductive activation of HCFC-123 by methaemalbumin. Zanovello A, Ferrara R, Manno M. Toxicol Lett; 2003 Sep 15; 144(1):127-36. PubMed ID: 12919730 [Abstract] [Full Text] [Related]
10. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b). Loizou GD, Anders MW. Drug Metab Dispos; 1993 Sep 15; 21(4):634-9. PubMed ID: 8104122 [Abstract] [Full Text] [Related]
11. Metabolism of 1,2-dichloro-1-fluoroethane and 1-fluoro-1,2,2-trichloroethane: electronic factors govern the regioselectivity of cytochrome P450-dependent oxidation. Yin H, Anders MW, Jones JP. Chem Res Toxicol; 1996 Sep 15; 9(1):50-7. PubMed ID: 8924616 [Abstract] [Full Text] [Related]
12. Selective inactivation of rat and bovine olfactory cytochrome P450 by three haloethanes. Marini S, Longo V, Zaccaro C, De Matteis F, Gervasi PG. Toxicol Lett; 2001 Oct 15; 124(1-3):83-90. PubMed ID: 11684360 [Abstract] [Full Text] [Related]
14. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane. Huwyler J, Aeschlimann D, Christen U, Gut J. Eur J Biochem; 1992 Jul 01; 207(1):229-38. PubMed ID: 1628651 [Abstract] [Full Text] [Related]
15. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation. Harris JW, Jones JP, Martin JL, LaRosa AC, Olson MJ, Pohl LR, Anders MW. Chem Res Toxicol; 1992 Jul 01; 5(5):720-5. PubMed ID: 1446014 [Abstract] [Full Text] [Related]
16. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons. White IN, De Matteis F. Toxicol Lett; 2001 Oct 15; 124(1-3):121-8. PubMed ID: 11684364 [Abstract] [Full Text] [Related]
17. Investigations on the liver toxicity of a blend of HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and HCFC-124 (2-chloro-1,1,1,2-tetrafluoroethane) in guinea-pigs. Hoet P, Buchet JP, Sempoux C, Nomiyama T, Rahier J, Lison D. Arch Toxicol; 2001 Jul 15; 75(5):274-83. PubMed ID: 11548120 [Abstract] [Full Text] [Related]
18. Conditions influencing the rat liver microsomal metabolism of 2,2,-dichloro-1,1,1-trifluoroethane (HCFC-123). Godin CS, Drerup JM, Vinegar A. Drug Metab Dispos; 1993 Jul 15; 21(3):551-3. PubMed ID: 8100516 [No Abstract] [Full Text] [Related]
19. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs. Hoet P, Buchet JP, Sempoux C, Haufroid V, Rahier J, Lison D. Arch Toxicol; 2002 Dec 15; 76(12):707-14. PubMed ID: 12451447 [Abstract] [Full Text] [Related]
20. Neoantigen formation and clastogenic action of HCFC-123 and perchloroethylene in human MCL-5 cells. White IN, Razvi N, Gibbs AH, Davies AM, Manno M, Zaccaro C, De Matteis F, Pähler A, Dekant W. Toxicol Lett; 2001 Oct 15; 124(1-3):129-38. PubMed ID: 11684365 [Abstract] [Full Text] [Related] Page: [Next] [New Search]