These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


380 related items for PubMed ID: 11685426

  • 1. Human osteopetrosis and other sclerosing disorders: recent genetic developments.
    de Vernejoul MC, Bénichou O.
    Calcif Tissue Int; 2001 Jul; 69(1):1-6. PubMed ID: 11685426
    [Abstract] [Full Text] [Related]

  • 2. Sclerosing bone disorders.
    de Vernejoul MC.
    Best Pract Res Clin Rheumatol; 2008 Mar; 22(1):71-83. PubMed ID: 18328982
    [Abstract] [Full Text] [Related]

  • 3. A clinical and molecular overview of the human osteopetroses.
    Balemans W, Van Wesenbeeck L, Van Hul W.
    Calcif Tissue Int; 2005 Nov; 77(5):263-74. PubMed ID: 16307387
    [Abstract] [Full Text] [Related]

  • 4. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification.
    Li YP, Chen W, Liang Y, Li E, Stashenko P.
    Nat Genet; 1999 Dec; 23(4):447-51. PubMed ID: 10581033
    [Abstract] [Full Text] [Related]

  • 5. [Genetic basis for skeletal disease. Molecular advances in sclerosing bone disorders].
    Michigami T.
    Clin Calcium; 2010 Aug; 20(8):1196-202. PubMed ID: 20675930
    [Abstract] [Full Text] [Related]

  • 6. Establishment and characterization of new osteoclast progenitor cell lines derived from osteopetrotic and wild type mice.
    Blin-Wakkach C, Breuil V, Quincey D, Bagnis C, Carle GF.
    Bone; 2006 Jul; 39(1):53-60. PubMed ID: 16503212
    [Abstract] [Full Text] [Related]

  • 7. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A.
    J Bone Miner Res; 2003 Oct; 18(10):1740-7. PubMed ID: 14584882
    [Abstract] [Full Text] [Related]

  • 8. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family.
    Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE.
    Proc Natl Acad Sci U S A; 2001 May 08; 98(10):5798-803. PubMed ID: 11331755
    [Abstract] [Full Text] [Related]

  • 9. Osteoclast biology: lessons from mammalian mutations.
    Marks SC.
    Am J Med Genet; 1989 Sep 08; 34(1):43-54. PubMed ID: 2683780
    [Abstract] [Full Text] [Related]

  • 10. Heritable sclerosing bone disorders: presentation and new molecular mechanisms.
    de Vernejoul MC, Kornak U.
    Ann N Y Acad Sci; 2010 Mar 08; 1192():269-77. PubMed ID: 20392246
    [Abstract] [Full Text] [Related]

  • 11. Recent developments in the understanding of the pathophysiology of osteopetrosis.
    Felix R, Hofstetter W, Cecchini MG.
    Eur J Endocrinol; 1996 Feb 08; 134(2):143-56. PubMed ID: 8630510
    [Abstract] [Full Text] [Related]

  • 12. Evidence that the rat osteopetrotic mutation toothless (tl) is not in the TNFSF11 (TRANCE, RANKL, ODF, OPGL) gene.
    Odgren PR, Kim N, van Wesenbeeck L, MacKay C, Mason-Savas A, Safadi FF, Popoff SN, Lengner C, van-Hul W, Choi Y, Marks SC.
    Int J Dev Biol; 2001 Dec 08; 45(8):853-9. PubMed ID: 11804028
    [Abstract] [Full Text] [Related]

  • 13. Morphological evidence of reduced bone resorption in the osteosclerotic (oc) mouse.
    Seifert MF, Marks SC.
    Am J Anat; 1985 Feb 08; 172(2):141-53. PubMed ID: 3976544
    [Abstract] [Full Text] [Related]

  • 14. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization.
    Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I.
    J Bone Miner Res; 1999 Oct 08; 14(10):1654-63. PubMed ID: 10491212
    [Abstract] [Full Text] [Related]

  • 15. Study of the nonresorptive phenotype of osteoclast-like cells from patients with malignant osteopetrosis: a new approach to investigating pathogenesis.
    Flanagan AM, Sarma U, Steward CG, Vellodi A, Horton MA.
    J Bone Miner Res; 2000 Feb 08; 15(2):352-60. PubMed ID: 10703938
    [Abstract] [Full Text] [Related]

  • 16. Towards a better understanding and new therapeutics of osteopetrosis.
    Askmyr MK, Fasth A, Richter J.
    Br J Haematol; 2008 Mar 08; 140(6):597-609. PubMed ID: 18241253
    [Abstract] [Full Text] [Related]

  • 17. [Osteopetrosis, from mouse to man].
    Blin-Wakkach C, Bernard F, Carle GF.
    Med Sci (Paris); 2004 Jan 08; 20(1):61-7. PubMed ID: 14770365
    [Abstract] [Full Text] [Related]

  • 18. Localization of the mutation responsible for osteopetrosis in the op rat to a 1.5-cM genetic interval on rat chromosome 10: identification of positional candidate genes by radiation hybrid mapping.
    Dobbins DE, Joe B, Hashiramoto A, Salstrom JL, Dracheva S, Ge L, Wilder RL, Remmers EF.
    J Bone Miner Res; 2002 Oct 08; 17(10):1761-7. PubMed ID: 12369779
    [Abstract] [Full Text] [Related]

  • 19. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.
    Kiviranta R, Morko J, Alatalo SL, NicAmhlaoibh R, Risteli J, Laitala-Leinonen T, Vuorio E.
    Bone; 2005 Jan 08; 36(1):159-72. PubMed ID: 15664014
    [Abstract] [Full Text] [Related]

  • 20. Congenital osteopetrotic mutations as probes of the origin, structure, and function of osteoclasts.
    Marks SC.
    Clin Orthop Relat Res; 1984 Oct 08; (189):239-63. PubMed ID: 6434217
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.