These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 11686704

  • 1. Molecular dynamics simulations of pressure effects on hydrophobic interactions.
    Ghosh T, García AE, Garde S.
    J Am Chem Soc; 2001 Nov 07; 123(44):10997-1003. PubMed ID: 11686704
    [Abstract] [Full Text] [Related]

  • 2. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M, Weiner S, Buldyrev SV, Stanley HE, Sastry S.
    J Chem Phys; 2012 Jan 28; 136(4):044512. PubMed ID: 22299896
    [Abstract] [Full Text] [Related]

  • 3. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R, Paul S.
    J Chem Phys; 2012 Sep 21; 137(11):114503. PubMed ID: 22998267
    [Abstract] [Full Text] [Related]

  • 4. Potential of mean force of hydrophobic association: dependence on solute size.
    Sobolewski E, Makowski M, Czaplewski C, Liwo A, Ołdziej S, Scheraga HA.
    J Phys Chem B; 2007 Sep 13; 111(36):10765-74. PubMed ID: 17713937
    [Abstract] [Full Text] [Related]

  • 5. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S, Chan HS.
    Proteins; 2002 Dec 01; 49(4):560-6. PubMed ID: 12402364
    [Abstract] [Full Text] [Related]

  • 6. Molecular origin of anticooperativity in hydrophobic association.
    Czaplewski C, Liwo A, Ripoll DR, Scheraga HA.
    J Phys Chem B; 2005 Apr 28; 109(16):8108-19. PubMed ID: 16851948
    [Abstract] [Full Text] [Related]

  • 7. Effect of pressure on conformational equilibria of 1-chloropropane and 1-bromopropane in water and organic solvents: a Raman spectroscopic study.
    Kasezawa K, Kato M.
    J Phys Chem B; 2009 Jun 25; 113(25):8607-12. PubMed ID: 19534564
    [Abstract] [Full Text] [Related]

  • 8. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R, Paul S.
    J Chem Phys; 2012 Sep 07; 137(9):094502. PubMed ID: 22957576
    [Abstract] [Full Text] [Related]

  • 9. Molecular dynamics study on hydrophobic effects in aqueous urea solutions.
    Ikeguchi M, Nakamura S, Shimizu K.
    J Am Chem Soc; 2001 Jan 31; 123(4):677-82. PubMed ID: 11456580
    [Abstract] [Full Text] [Related]

  • 10. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
    Sarupria S, Garde S.
    Phys Rev Lett; 2009 Jul 17; 103(3):037803. PubMed ID: 19659321
    [Abstract] [Full Text] [Related]

  • 11. Contributions of solvent-solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water.
    Rank JA, Baker D.
    Biophys Chem; 1998 Apr 20; 71(2-3):199-204. PubMed ID: 9648207
    [Abstract] [Full Text] [Related]

  • 12. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins.
    Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR.
    Proc Natl Acad Sci U S A; 1998 Feb 17; 95(4):1552-5. PubMed ID: 9465053
    [Abstract] [Full Text] [Related]

  • 13. On the thermodynamics and kinetics of hydrophobic interactions at interfaces.
    Vembanur S, Patel AJ, Sarupria S, Garde S.
    J Phys Chem B; 2013 Sep 05; 117(35):10261-70. PubMed ID: 23906438
    [Abstract] [Full Text] [Related]

  • 14. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S, Chan HS.
    Proteins; 2002 Jul 01; 48(1):15-30. PubMed ID: 12012334
    [Abstract] [Full Text] [Related]

  • 15. Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: molecular dynamics study of a pair of methane molecules in water at various temperatures.
    Sobolewski E, Makowski M, Oldziej S, Czaplewski C, Liwo A, Scheraga HA.
    Protein Eng Des Sel; 2009 Sep 01; 22(9):547-52. PubMed ID: 19556395
    [Abstract] [Full Text] [Related]

  • 16. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity.
    Moghaddam MS, Shimizu S, Chan HS.
    J Am Chem Soc; 2005 Jan 12; 127(1):303-16. PubMed ID: 15631480
    [Abstract] [Full Text] [Related]

  • 17. A nucleation-based method to study hydrophobic interactions under confinement: enhanced hydrophobic association driven by energetic contributions.
    Kim H, Keasler SJ, Chen B.
    J Phys Chem B; 2014 Jun 19; 118(24):6875-84. PubMed ID: 24853272
    [Abstract] [Full Text] [Related]

  • 18. Microscopic mechanism for cold denaturation.
    Dias CL, Ala-Nissila T, Karttunen M, Vattulainen I, Grant M.
    Phys Rev Lett; 2008 Mar 21; 100(11):118101. PubMed ID: 18517830
    [Abstract] [Full Text] [Related]

  • 19. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations.
    Setny P.
    J Chem Phys; 2008 Mar 28; 128(12):125105. PubMed ID: 18376980
    [Abstract] [Full Text] [Related]

  • 20. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water.
    Raschke TM, Tsai J, Levitt M.
    Proc Natl Acad Sci U S A; 2001 May 22; 98(11):5965-9. PubMed ID: 11353861
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.