These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 11687623

  • 1. The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site.
    Kelly MJ, Ball LJ, Krieger C, Yu Y, Fischer M, Schiffmann S, Schmieder P, Kühne R, Bermel W, Bacher A, Richter G, Oschkinat H.
    Proc Natl Acad Sci U S A; 2001 Nov 06; 98(23):13025-30. PubMed ID: 11687623
    [Abstract] [Full Text] [Related]

  • 2. A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity.
    Sim Goo K, Song Chua C, Sim TS.
    Proteins; 2008 Feb 15; 70(3):739-47. PubMed ID: 17729280
    [Abstract] [Full Text] [Related]

  • 3. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM, Sarathy KP, Gruber TD, Addala E, Kiessling LL, Sanders DA.
    Biochemistry; 2007 Jun 12; 46(23):6723-32. PubMed ID: 17511471
    [Abstract] [Full Text] [Related]

  • 4. UDP-galactopyranose mutase has a novel structure and mechanism.
    Sanders DA, Staines AG, McMahon SA, McNeil MR, Whitfield C, Naismith JH.
    Nat Struct Biol; 2001 Oct 12; 8(10):858-63. PubMed ID: 11573090
    [Abstract] [Full Text] [Related]

  • 5. Potential anti-bacterial drug target: structural characterization of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Salmonella typhimurium LT2.
    Kumar P, Singh M, Gautam R, Karthikeyan S.
    Proteins; 2010 Dec 12; 78(16):3292-303. PubMed ID: 20806221
    [Abstract] [Full Text] [Related]

  • 6. The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria.
    Li J, Hua Z, Miao L, Jian T, Wei Y, Shasha Z, Shaocheng Z, Zhen G, Hongpeng Z, Ailong H, Deqiang W.
    Protein Expr Purif; 2013 Oct 12; 91(2):161-8. PubMed ID: 23954596
    [Abstract] [Full Text] [Related]

  • 7. Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: implications for an enzyme family.
    Kolappan S, Zwahlen J, Zhou R, Truglio JJ, Tonge PJ, Kisker C.
    Biochemistry; 2007 Jan 30; 46(4):946-53. PubMed ID: 17240978
    [Abstract] [Full Text] [Related]

  • 8. Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans.
    Echt S, Bauer S, Steinbacher S, Huber R, Bacher A, Fischer M.
    J Mol Biol; 2004 Aug 20; 341(4):1085-96. PubMed ID: 15328619
    [Abstract] [Full Text] [Related]

  • 9. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S, Schulz-Gasch T, Taramino S, Scaldaferri M, Viola F, Balliano G.
    Biochem Soc Trans; 2005 Nov 20; 33(Pt 5):1202-5. PubMed ID: 16246081
    [Abstract] [Full Text] [Related]

  • 10. NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates.
    Scheuring J, Fischer M, Cushman M, Lee J, Bacher A, Oschkinat H.
    Biochemistry; 1996 Jul 30; 35(30):9637-46. PubMed ID: 8703935
    [Abstract] [Full Text] [Related]

  • 11. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site.
    Axarli I, Dhavala P, Papageorgiou AC, Labrou NE.
    J Mol Biol; 2009 Jan 23; 385(3):984-1002. PubMed ID: 19014949
    [Abstract] [Full Text] [Related]

  • 12. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding.
    Cheng CS, Chen MN, Lai YT, Chen T, Lin KF, Liu YJ, Lyu PC.
    Proteins; 2008 Feb 15; 70(3):695-706. PubMed ID: 17729272
    [Abstract] [Full Text] [Related]

  • 13. Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR.
    Clore GM, Gronenborn AM.
    Protein Sci; 1994 Mar 15; 3(3):372-90. PubMed ID: 8019409
    [Abstract] [Full Text] [Related]

  • 14. Identification of the residues in the helix F/G loop important to catalytic function of membrane-bound prostacyclin synthase.
    Deng H, Wu J, So SP, Ruan KH.
    Biochemistry; 2003 May 20; 42(19):5609-17. PubMed ID: 12741817
    [Abstract] [Full Text] [Related]

  • 15. Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase.
    Duan J, Li L, Lu J, Wang W, Ye K.
    Mol Cell; 2009 May 14; 34(4):427-39. PubMed ID: 19481523
    [Abstract] [Full Text] [Related]

  • 16. Structural studies on a protein-binding zinc-finger domain of Eos reveal both similarities and differences to classical zinc fingers.
    Westman BJ, Perdomo J, Matthews JM, Crossley M, Mackay JP.
    Biochemistry; 2004 Oct 26; 43(42):13318-27. PubMed ID: 15491138
    [Abstract] [Full Text] [Related]

  • 17. Exploring the mechanism of binding of UDP-galactopyranose to UDP-galactopyranose mutase by STD-NMR spectroscopy and molecular modeling.
    Yuan Y, Wen X, Sanders DA, Pinto BM.
    Biochemistry; 2005 Nov 01; 44(43):14080-9. PubMed ID: 16245924
    [Abstract] [Full Text] [Related]

  • 18. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA.
    J Am Chem Soc; 2004 Mar 03; 126(8):2390-8. PubMed ID: 14982445
    [Abstract] [Full Text] [Related]

  • 19. Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47.
    Nakaishi A, Hirose M, Yoshimura M, Oneyama C, Saito K, Kuki N, Matsuda M, Honma N, Ohnishi H, Matozaki T, Okada M, Nakagawa A.
    J Mol Biol; 2008 Jan 18; 375(3):650-60. PubMed ID: 18045614
    [Abstract] [Full Text] [Related]

  • 20. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY, Wang XR.
    FEBS Lett; 2005 May 09; 579(12):2657-62. PubMed ID: 15862305
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.