These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
411 related items for PubMed ID: 11701768
1. Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNS. Laflamme N, Soucy G, Rivest S. J Neurochem; 2001 Nov; 79(3):648-57. PubMed ID: 11701768 [Abstract] [Full Text] [Related]
2. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. Laflamme N, Rivest S. FASEB J; 2001 Jan; 15(1):155-163. PubMed ID: 11149903 [Abstract] [Full Text] [Related]
3. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Laflamme N, Echchannaoui H, Landmann R, Rivest S. Eur J Immunol; 2003 Apr; 33(4):1127-38. PubMed ID: 12672079 [Abstract] [Full Text] [Related]
4. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D. J Immunol; 2001 Feb 01; 166(3):1938-44. PubMed ID: 11160242 [Abstract] [Full Text] [Related]
5. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. Dziarski R, Gupta D. J Endotoxin Res; 2000 Feb 01; 6(5):401-5. PubMed ID: 11521063 [Abstract] [Full Text] [Related]
6. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Immunity; 1999 Oct 01; 11(4):443-51. PubMed ID: 10549626 [Abstract] [Full Text] [Related]
7. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Talreja J, Kabir MH, B Filla M, Stechschulte DJ, Dileepan KN. Immunology; 2004 Oct 01; 113(2):224-33. PubMed ID: 15379983 [Abstract] [Full Text] [Related]
8. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. J Biol Chem; 1999 Jun 18; 274(25):17406-9. PubMed ID: 10364168 [Abstract] [Full Text] [Related]
9. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X. Immunology; 2002 May 18; 106(1):38-45. PubMed ID: 11972630 [Abstract] [Full Text] [Related]
10. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. J Immunol; 1999 Jul 01; 163(1):1-5. PubMed ID: 10384090 [Abstract] [Full Text] [Related]
11. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y. J Immunol; 2000 Nov 15; 165(10):5767-72. PubMed ID: 11067935 [Abstract] [Full Text] [Related]
12. Upregulation of toll-like receptor 2 gene expression in macrophage response to peptidoglycan and high concentration of lipopolysaccharide is involved in NF-kappa b activation. Liu Y, Wang Y, Yamakuchi M, Isowaki S, Nagata E, Kanmura Y, Kitajima I, Maruyama I. Infect Immun; 2001 May 15; 69(5):2788-96. PubMed ID: 11292690 [Abstract] [Full Text] [Related]
13. Lipopolysaccharide-binding protein inhibits toll-like receptor 2 activation by lipoteichoic acid in human odontoblast-like cells. Carrouel F, Staquet MJ, Keller JF, Baudouin C, Msika P, Bleicher F, Alliot-Licht B, Farges JC. J Endod; 2013 Aug 15; 39(8):1008-14. PubMed ID: 23880268 [Abstract] [Full Text] [Related]
14. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. J Immunol; 2001 Feb 01; 166(3):2018-24. PubMed ID: 11160251 [Abstract] [Full Text] [Related]
15. Toll-like receptor 2-independent and MyD88-dependent gene expression in the mouse brain. Naert G, Laflamme N, Rivest S. J Innate Immun; 2009 Feb 01; 1(5):480-93. PubMed ID: 20375605 [Abstract] [Full Text] [Related]
16. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, Zhou Y, Hu B, Arditi M, Abreu MT. J Immunol; 2003 Feb 01; 170(3):1406-15. PubMed ID: 12538701 [Abstract] [Full Text] [Related]
18. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. Thibeault I, Laflamme N, Rivest S. J Comp Neurol; 2001 Jun 11; 434(4):461-77. PubMed ID: 11343293 [Abstract] [Full Text] [Related]
19. Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. Mempel M, Voelcker V, Köllisch G, Plank C, Rad R, Gerhard M, Schnopp C, Fraunberger P, Walli AK, Ring J, Abeck D, Ollert M. J Invest Dermatol; 2003 Dec 11; 121(6):1389-96. PubMed ID: 14675188 [Abstract] [Full Text] [Related]