These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1074 related items for PubMed ID: 11715022

  • 1. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ.
    Nat Cell Biol; 2001 Nov; 3(11):1009-13. PubMed ID: 11715022
    [Abstract] [Full Text] [Related]

  • 2. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD.
    Nat Cell Biol; 2001 Nov; 3(11):1014-9. PubMed ID: 11715023
    [Abstract] [Full Text] [Related]

  • 3. Insulin, insulin-like growth factor-I, and platelet-derived growth factor activate extracellular signal-regulated kinase by distinct pathways in muscle cells.
    Tsakiridis T, Tsiani E, Lekas P, Bergman A, Cherepanov V, Whiteside C, Downey GP.
    Biochem Biophys Res Commun; 2001 Oct 19; 288(1):205-11. PubMed ID: 11594774
    [Abstract] [Full Text] [Related]

  • 4. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.
    Peyrollier K, Hajduch E, Blair AS, Hyde R, Hundal HS.
    Biochem J; 2000 Sep 01; 350 Pt 2(Pt 2):361-8. PubMed ID: 10947949
    [Abstract] [Full Text] [Related]

  • 5. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha.
    Foulstone EJ, Huser C, Crown AL, Holly JM, Stewart CE.
    Exp Cell Res; 2004 Mar 10; 294(1):223-35. PubMed ID: 14980516
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1.
    Park IH, Erbay E, Nuzzi P, Chen J.
    Exp Cell Res; 2005 Sep 10; 309(1):211-9. PubMed ID: 15963500
    [Abstract] [Full Text] [Related]

  • 10. Involvement of phospholipase D in insulin-like growth factor-I-induced activation of extracellular signal-regulated kinase, but not phosphoinositide 3-kinase or Akt, in Chinese hamster ovary cells.
    Banno Y, Takuwa Y, Yamada M, Takuwa N, Ohguchi K, Hara A, Nozawa Y.
    Biochem J; 2003 Jan 15; 369(Pt 2):363-8. PubMed ID: 12385647
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA.
    Nature; 2003 Jan 15; 378(6559):785-9. PubMed ID: 8524413
    [Abstract] [Full Text] [Related]

  • 12. Raptor-rictor axis in TGFbeta-induced protein synthesis.
    Das F, Ghosh-Choudhury N, Mahimainathan L, Venkatesan B, Feliers D, Riley DJ, Kasinath BS, Choudhury GG.
    Cell Signal; 2008 Feb 15; 20(2):409-23. PubMed ID: 18068336
    [Abstract] [Full Text] [Related]

  • 13. IGF-I and insulin regulate eIF4F formation by different mechanisms in muscle and liver in the ovine fetus.
    Shen W, Mallon D, Boyle DW, Liechty EA.
    Am J Physiol Endocrinol Metab; 2002 Sep 15; 283(3):E593-603. PubMed ID: 12169454
    [Abstract] [Full Text] [Related]

  • 14. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy.
    Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O.
    J Cell Physiol; 2008 Feb 15; 214(2):316-21. PubMed ID: 17941081
    [Abstract] [Full Text] [Related]

  • 15. Insulin-like growth factor 1 signaling regulates cytosolic sialidase Neu2 expression during myoblast differentiation and hypertrophy.
    Fanzani A, Colombo F, Giuliani R, Preti A, Marchesini S.
    FEBS J; 2006 Aug 15; 273(16):3709-21. PubMed ID: 16869890
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways.
    Codina M, García de la serrana D, Sánchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutiérrez J.
    Gen Comp Endocrinol; 2008 Jun 15; 157(2):116-24. PubMed ID: 18504044
    [Abstract] [Full Text] [Related]

  • 18. High K+ and IGF-1 protect cerebellar granule neurons via distinct signaling pathways.
    Zhong J, Deng J, Huang S, Yang X, Lee WH.
    J Neurosci Res; 2004 Mar 15; 75(6):794-806. PubMed ID: 14994340
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation.
    Song YH, Godard M, Li Y, Richmond SR, Rosenthal N, Delafontaine P.
    J Investig Med; 2005 Apr 15; 53(3):135-42. PubMed ID: 15921033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.