These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 11718674
1. La(3+) stabilizes the hexagonal II (H(II)) phase in phosphatidylethanolamine membranes. Tanaka T, Li SJ, Kinoshita K, Yamazaki M. Biochim Biophys Acta; 2001 Dec 01; 1515(2):189-201. PubMed ID: 11718674 [Abstract] [Full Text] [Related]
2. The mechanism of the stabilization of the hexagonal II (HII) phase in phosphatidylethanolamine membranes in the presence of low concentrations of dimethyl sulfoxide. Kinoshita K, Li SJ, Yamazaki M. Eur Biophys J; 2001 Jul 01; 30(3):207-20. PubMed ID: 11508840 [Abstract] [Full Text] [Related]
3. Low pH Stabilizes the Inverted Hexagonal II Phase in Dipalmitoleoylphosphatidylethanolamine Membrane. Li SJ, Yamazaki M. J Biol Phys; 2004 Jan 01; 30(4):377-86. PubMed ID: 23345879 [Abstract] [Full Text] [Related]
4. Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (H II) phase transition in dipalmitoleoylphosphatidylethanolamine membranes. Li SJ, Yamazaki M. Biophys Chem; 2004 Apr 01; 109(1):149-55. PubMed ID: 15059667 [Abstract] [Full Text] [Related]
5. Phase transition between hexagonal II (H[II]) and liquid-crystalline phase induced by interaction between solvents and segments of the membrane surface of dioleoylphosphatidylethanolamine. Kinoshita K, Yamazaki M. Biochim Biophys Acta; 1997 Dec 04; 1330(2):199-206. PubMed ID: 9408173 [Abstract] [Full Text] [Related]
6. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases. Jordanova A, Lalchev Z, Tenchov B. Eur Biophys J; 2003 Feb 04; 31(8):626-32. PubMed ID: 12582822 [Abstract] [Full Text] [Related]
7. Bilayer structural destabilization by low amounts of chlorophyll a. Vladkova R, Koynova R, Teuchner K, Tenchov B. Biochim Biophys Acta; 2010 Aug 04; 1798(8):1586-92. PubMed ID: 20478266 [Abstract] [Full Text] [Related]
8. Cerebrosides alter the lyotropic and thermotropic phase transitions of DOPE:DOPC and DOPE:DOPC:sterol mixtures. Webb MS, Irving TC, Steponkus PL. Biochim Biophys Acta; 1997 Jun 12; 1326(2):225-35. PubMed ID: 9218553 [Abstract] [Full Text] [Related]
9. Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. Li SJ, Yamashita Y, Yamazaki M. Biophys J; 2001 Aug 12; 81(2):983-93. PubMed ID: 11463640 [Abstract] [Full Text] [Related]
10. Bilayer stabilization of phosphatidylethanolamine by N-biotinylphosphatidylethanolamine. Wright SE, Huang L. Biochim Biophys Acta; 1992 Jan 10; 1103(1):172-8. PubMed ID: 1730017 [Abstract] [Full Text] [Related]
11. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Siegel DP, Epand RM. Biochim Biophys Acta; 2000 Sep 29; 1468(1-2):87-98. PubMed ID: 11018654 [Abstract] [Full Text] [Related]
12. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes. Gawrisch K, Parsegian VA, Hajduk DA, Tate MW, Graner SM, Fuller NL, Rand RP. Biochemistry; 1992 Mar 24; 31(11):2856-64. PubMed ID: 1550812 [Abstract] [Full Text] [Related]
13. Phase behavior and glass transition of 1,2-dioleoylphosphatidylethanolamine (DOPE) dehydrated in the presence of sucrose. Shalaev EY, Steponkus PL. Biochim Biophys Acta; 2001 Sep 03; 1514(1):100-16. PubMed ID: 11513808 [Abstract] [Full Text] [Related]
14. Conformational and hydrational properties during the L(beta)- to L(alpha)- and L(alpha)- to H(II)-phase transition in phosphatidylethanolamine. Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P. Chem Phys Lipids; 2008 Jul 03; 154(1):46-55. PubMed ID: 18339315 [Abstract] [Full Text] [Related]
15. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Fuller N, Rand RP. Biophys J; 2001 Jul 03; 81(1):243-54. PubMed ID: 11423410 [Abstract] [Full Text] [Related]
16. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Rand RP, Fuller NL, Gruner SM, Parsegian VA. Biochemistry; 1990 Jan 09; 29(1):76-87. PubMed ID: 2322550 [Abstract] [Full Text] [Related]
17. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Botelho AV, Gibson NJ, Thurmond RL, Wang Y, Brown MF. Biochemistry; 2002 May 21; 41(20):6354-68. PubMed ID: 12009897 [Abstract] [Full Text] [Related]
18. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP, Lewis RN, Hodges RS, McElhaney RN. Biophys J; 1995 Mar 21; 68(3):847-57. PubMed ID: 7756552 [Abstract] [Full Text] [Related]
19. New phases of phospholipids and implications to the membrane fusion problem. Yang L, Ding L, Huang HW. Biochemistry; 2003 Jun 10; 42(22):6631-5. PubMed ID: 12779317 [Abstract] [Full Text] [Related]
20. Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Shalaev EY, Steponkus PL. Biochim Biophys Acta; 1999 Jul 15; 1419(2):229-47. PubMed ID: 10407074 [Abstract] [Full Text] [Related] Page: [Next] [New Search]