These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
376 related items for PubMed ID: 11729954
1. The epicardium as a source of mesenchyme for the developing heart. Muñoz-Chápuli R, Pérez-Pomares JM, Macías D, García-Garrido L, Carmona R, González-Iriarte M. Ital J Anat Embryol; 2001; 106(2 Suppl 1):187-96. PubMed ID: 11729954 [Abstract] [Full Text] [Related]
2. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Pérez-Pomares JM, Macías D, García-Garrido L, Muñoz-Chápuli R. Dev Biol; 1998 Aug 01; 200(1):57-68. PubMed ID: 9698456 [Abstract] [Full Text] [Related]
3. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Pérez-Pomares JM, Macías D, García-Garrido L, Muñoz-Chápuli R. Dev Dyn; 1997 Oct 01; 210(2):96-105. PubMed ID: 9337131 [Abstract] [Full Text] [Related]
4. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dettman RW, Denetclaw W, Ordahl CP, Bristow J. Dev Biol; 1998 Jan 15; 193(2):169-81. PubMed ID: 9473322 [Abstract] [Full Text] [Related]
5. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Männer J. Anat Rec; 1999 Jun 01; 255(2):212-26. PubMed ID: 10359522 [Abstract] [Full Text] [Related]
6. Immunolocalization of the transcription factor Slug in the developing avian heart. Carmona R, González-Iriarte M, Macías D, Pérez-Pomares JM, García-Garrido L, Muñoz-Chápuli R. Anat Embryol (Berl); 2000 Feb 01; 201(2):103-9. PubMed ID: 10672362 [Abstract] [Full Text] [Related]
7. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Pérez-Pomares JM, Phelps A, Sedmerova M, Carmona R, González-Iriarte M, Muñoz-Chápuli R, Wessels A. Dev Biol; 2002 Jul 15; 247(2):307-26. PubMed ID: 12086469 [Abstract] [Full Text] [Related]
8. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Guadix JA, Carmona R, Muñoz-Chápuli R, Pérez-Pomares JM. Dev Dyn; 2006 Apr 15; 235(4):1014-26. PubMed ID: 16456846 [Abstract] [Full Text] [Related]
9. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Macías D, Pérez-Pomares JM, García-Garrido L, Carmona R, Muñoz-Chápuli R. Anat Embryol (Berl); 1998 Oct 15; 198(4):307-15. PubMed ID: 9764544 [Abstract] [Full Text] [Related]
10. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Wunsch AM, Little CD, Markwald RR. Dev Biol; 1994 Oct 15; 165(2):585-601. PubMed ID: 7958424 [Abstract] [Full Text] [Related]
11. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Dev Biol; 2001 Jun 01; 234(1):204-15. PubMed ID: 11356030 [Abstract] [Full Text] [Related]
12. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. Tex Heart Inst J; 2002 Jun 01; 29(4):255-61. PubMed ID: 12484609 [Abstract] [Full Text] [Related]
13. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Pérez-Pomares JM, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. Int J Dev Biol; 2002 Dec 01; 46(8):1005-13. PubMed ID: 12533024 [Abstract] [Full Text] [Related]
14. Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Romano LA, Runyan RB. Dev Biol; 1999 Aug 01; 212(1):243-54. PubMed ID: 10419699 [Abstract] [Full Text] [Related]
15. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE. Circ Res; 1998 Jun 01; 82(10):1043-52. PubMed ID: 9622157 [Abstract] [Full Text] [Related]
16. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Braitsch CM, Combs MD, Quaggin SE, Yutzey KE. Dev Biol; 2012 Aug 15; 368(2):345-57. PubMed ID: 22687751 [Abstract] [Full Text] [Related]
17. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Dev Biol; 2008 Oct 01; 322(1):208-18. PubMed ID: 18718461 [Abstract] [Full Text] [Related]
18. Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Romano LA, Runyan RB. Dev Biol; 2000 Jul 01; 223(1):91-102. PubMed ID: 10864463 [Abstract] [Full Text] [Related]
19. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE. Anat Embryol (Berl); 1999 Apr 01; 199(4):367-78. PubMed ID: 10195310 [Abstract] [Full Text] [Related]