These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
88 related items for PubMed ID: 11732174
41. Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. Peretz A, Sheinin A, Yue C, Degani-Katzav N, Gibor G, Nachman R, Gopin A, Tam E, Shabat D, Yaari Y, Attali B. J Neurophysiol; 2007 Jan; 97(1):283-95. PubMed ID: 17050829 [Abstract] [Full Text] [Related]
42. A model for a G-protein-mediated mechanism for synaptic channel modulation. Soto G, Othmer HG. Math Biosci; 2006 Apr; 200(2):188-213. PubMed ID: 16540128 [Abstract] [Full Text] [Related]
43. Presynaptic calcium stores and synaptic transmission. Collin T, Marty A, Llano I. Curr Opin Neurobiol; 2005 Jun; 15(3):275-81. PubMed ID: 15919193 [Abstract] [Full Text] [Related]
47. Time course of transmitter release calculated from simulations of a calcium diffusion model. Yamada WM, Zucker RS. Biophys J; 1992 Mar; 61(3):671-82. PubMed ID: 1354503 [Abstract] [Full Text] [Related]
48. Control of neurotransmitter release by an internal gel matrix in synaptic vesicles. Reigada D, Díez-Pérez I, Gorostiza P, Verdaguer A, Gómez de Aranda I, Pineda O, Vilarrasa J, Marsal J, Blasi J, Aleu J, Solsona C. Proc Natl Acad Sci U S A; 2003 Mar 18; 100(6):3485-90. PubMed ID: 12629223 [Abstract] [Full Text] [Related]
50. Theory of fast neurotransmitter release control based on voltage-dependent interaction between autoreceptors and proteins of the exocytotic machinery. Yusim K, Parnas H, Segel L. Bull Math Biol; 1999 Jul 18; 61(4):701-25. PubMed ID: 17883221 [Abstract] [Full Text] [Related]
51. The magnitude and significance of Ca2+ domains for release of neurotransmitter. Aharon S, Parnas H, Parnas I. Bull Math Biol; 1994 Nov 18; 56(6):1095-119. PubMed ID: 7833845 [Abstract] [Full Text] [Related]
52. Neurotransmitter release: development of a theory for total release based on kinetics. Lustig C, Parnas H, Segel LA. J Theor Biol; 1989 Jan 23; 136(2):151-70. PubMed ID: 2570884 [Abstract] [Full Text] [Related]
54. Fluxes theory in experiments with random distributed channels on vesicles. Salinas DG. Channels (Austin); 2014 Jan 23; 8(3):258-63. PubMed ID: 24643013 [Abstract] [Full Text] [Related]
55. [Acetylcholine-bradykinin: a new peptide-amine transmitter interaction]. Pirola CJ. Medicina (B Aires); 1980 Jan 23; 40(6 Pt 2):893-5. PubMed ID: 6111737 [No Abstract] [Full Text] [Related]
56. Modeling and Evaluation of Vesicle Release Mechanisms in Neuro-Spike Communication. Yu W, Lin L. IEEE Trans Nanobioscience; 2022 Jul 23; 21(3):416-424. PubMed ID: 35436195 [Abstract] [Full Text] [Related]
59. On the feedback between theory and experiment in elucidating the molecular mechanisms underlying neurotransmitter release. Khanin R, Parnas I, Parnas H. Bull Math Biol; 2006 Jul 23; 68(5):997-1009. PubMed ID: 16832736 [Abstract] [Full Text] [Related]