These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 11732841

  • 1. Isolation and characterization of a Xenopus gene (XMLP) encoding a MARCKS-like protein.
    Zhao H, Cao Y, Grunz H.
    Int J Dev Biol; 2001 Oct; 45(7):817-26. PubMed ID: 11732841
    [Abstract] [Full Text] [Related]

  • 2. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R, Oschwald R, Chen Y, Tacke L, Grunz H.
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [Abstract] [Full Text] [Related]

  • 3. Isolation and characterization of a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein.
    Ruan XZ, Yang HS, Yao SH, Ma FX, Zhao XY, Yan F, Wang CT, Lai ST, Deng HX, Wei YQ.
    Mol Reprod Dev; 2007 Dec; 74(12):1505-13. PubMed ID: 17440976
    [Abstract] [Full Text] [Related]

  • 4. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C, Suzuki T, Nishida E, Kusakabe M.
    Int J Dev Biol; 2012 Dec; 56(5):393-402. PubMed ID: 22811273
    [Abstract] [Full Text] [Related]

  • 5. Xl erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation.
    Baltzinger M, Mager-Heckel AM, Remy P.
    Dev Dyn; 1999 Dec; 216(4-5):420-33. PubMed ID: 10633861
    [Abstract] [Full Text] [Related]

  • 6. Refinement of gene expression patterns in the early Xenopus embryo.
    Wardle FC, Smith JC.
    Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341
    [Abstract] [Full Text] [Related]

  • 7. Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis.
    Dirscherl SS, Henry JJ, Krebs JE.
    Mech Dev; 2005 Nov; 122(11):1157-70. PubMed ID: 16169710
    [Abstract] [Full Text] [Related]

  • 8. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y, Whitaker LL, Ramsdell AF.
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [Abstract] [Full Text] [Related]

  • 9. Xenopus LIM motif-containing protein kinase, Xlimk1, is expressed in the developing head structure of the embryo.
    Takahashi T, Aoki S, Nakamura T, Koshimizu U, Matsumoto K, Nakamura T.
    Dev Dyn; 1997 Jun; 209(2):196-205. PubMed ID: 9186054
    [Abstract] [Full Text] [Related]

  • 10. Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP).
    Hammoud L, Walsh LA, Damjanovski S.
    Biochem Cell Biol; 2006 Apr; 84(2):167-77. PubMed ID: 16609697
    [Abstract] [Full Text] [Related]

  • 11. Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene.
    Haldin CE, Nijjar S, Massé K, Barnett MW, Jones EA.
    Int J Dev Biol; 2003 May; 47(4):253-62. PubMed ID: 12755330
    [Abstract] [Full Text] [Related]

  • 12. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.
    Suzawa K, Yukita A, Hayata T, Goto T, Danno H, Michiue T, Cho KW, Asashima M.
    Int J Dev Biol; 2007 May; 51(3):183-90. PubMed ID: 17486538
    [Abstract] [Full Text] [Related]

  • 13. Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development.
    Kuerner KM, Steinbeisser H.
    Dev Dyn; 2006 Oct; 235(10):2861-7. PubMed ID: 16894599
    [Abstract] [Full Text] [Related]

  • 14. Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors.
    Naye F, Tréguer K, Soulet F, Faucheux C, Fédou S, Thézé N, Thiébaud P.
    Int J Dev Biol; 2007 Oct; 51(8):745-52. PubMed ID: 17939122
    [Abstract] [Full Text] [Related]

  • 15. Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis.
    Tanibe M, Michiue T, Yukita A, Danno H, Ikuzawa M, Ishiura S, Asashima M.
    Int J Dev Biol; 2008 Oct; 52(7):893-901. PubMed ID: 18956319
    [Abstract] [Full Text] [Related]

  • 16. Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family.
    Fujimi TJ, Mikoshiba K, Aruga J.
    Dev Dyn; 2006 Dec; 235(12):3379-86. PubMed ID: 16871625
    [Abstract] [Full Text] [Related]

  • 17. Overexpression of wild-type p53 interferes with normal development in Xenopus laevis embryos.
    Hoever M, Clement JH, Wedlich D, Montenarh M, Knöchel W.
    Oncogene; 1994 Jan; 9(1):109-20. PubMed ID: 8302570
    [Abstract] [Full Text] [Related]

  • 18. Identification and characterization of Xenopus OMP25.
    Inui M, Asashima M.
    Dev Growth Differ; 2004 Oct; 46(5):405-12. PubMed ID: 15606486
    [Abstract] [Full Text] [Related]

  • 19. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Akagi K, Kyun Park E, Mood K, Daar IO.
    Dev Dyn; 2002 Mar; 223(2):216-28. PubMed ID: 11836786
    [Abstract] [Full Text] [Related]

  • 20. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E, de Santa Barbara P, Guémar L, Donnay JM, Fort P, Faure S.
    Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.