These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes. Hirasawa M, Schürmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB. Biochemistry; 1999 Apr 20; 38(16):5200-5. PubMed ID: 10213627 [Abstract] [Full Text] [Related]
3. Sulfitolysis and thioredoxin-dependent reduction reveal the presence of a structural disulfide bridge in spinach chloroplast fructose-1,6-bisphosphatase. Drescher DF, Follmann H, Häberlein I. FEBS Lett; 1998 Mar 06; 424(1-2):109-12. PubMed ID: 9537525 [Abstract] [Full Text] [Related]
4. Chloroplast fructose 1,6-bisphosphatase with changed redox modulation: comparison of the Galdieria enzyme with cysteine mutants from spinach. Reichert A, Dennes A, Vetter S, Scheibe R. Biochim Biophys Acta; 2003 Feb 21; 1645(2):212-7. PubMed ID: 12573251 [Abstract] [Full Text] [Related]
5. Heterodimer formation between thioredoxin f and fructose 1,6-bisphosphatase from spinach chloroplasts. Balmer Y, Schürmann P. FEBS Lett; 2001 Mar 09; 492(1-2):58-61. PubMed ID: 11248237 [Abstract] [Full Text] [Related]
6. Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. Jacquot JP, Lopez-Jaramillo J, Miginiac-Maslow M, Lemaire S, Cherfils J, Chueca A, Lopez-Gorge J. FEBS Lett; 1997 Jan 20; 401(2-3):143-7. PubMed ID: 9013875 [Abstract] [Full Text] [Related]
7. High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1,6-bisphosphatase activation. López Jaramillo J, Chueca A, Jacquot JP, Hermoso R, Lázaro JJ, Sahrawy M, López Gorgé J. Plant Physiol; 1997 Aug 20; 114(4):1169-75. PubMed ID: 9276945 [Abstract] [Full Text] [Related]
8. A simple procedure for purifying the major chloroplast fructose-1,6-bisphosphatase from spinach (Spinacia oleracea) and characterization of its stimulation by sub-femtomolar mercuric ions. Ashton AR. Arch Biochem Biophys; 1998 Sep 15; 357(2):207-24. PubMed ID: 9735161 [Abstract] [Full Text] [Related]
9. Directed mutagenesis shows that the preceding region of the chloroplast fructose-1,6-bisphosphatase regulatory sequence is the thioredoxin docking site. Sahrawy M, Chueca A, Hermoso R, Lázaro JJ, Gorgé JL. J Mol Biol; 1997 Jun 20; 269(4):623-30. PubMed ID: 9217265 [Abstract] [Full Text] [Related]
10. Thiol/disulfide exchange in the thioredoxin-catalyzed reductive activation of spinach chloroplast fructose-1,6-bisphosphatase. Kinetics and thermodynamics. Clancey CJ, Gilbert HF. J Biol Chem; 1987 Oct 05; 262(28):13545-9. PubMed ID: 2820974 [Abstract] [Full Text] [Related]
11. Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB, López Gorgé J. Biochim Biophys Acta; 2001 May 05; 1547(1):156-66. PubMed ID: 11343801 [Abstract] [Full Text] [Related]
12. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. Mora-García S, Rodríguez-Suárez R, Wolosiuk RA. J Biol Chem; 1998 Jun 26; 273(26):16273-80. PubMed ID: 9632687 [Abstract] [Full Text] [Related]
13. Differential effects of chilling-induced photooxidation on the redox regulation of photosynthetic enzymes. Hutchison RS, Groom Q, Ort DR. Biochemistry; 2000 Jun 06; 39(22):6679-88. PubMed ID: 10828986 [Abstract] [Full Text] [Related]
14. Binding site on pea chloroplast fructose-1,6-bisphosphatase involved in the interaction with thioredoxin. Hermoso R, Castillo M, Chueca A, Lázaro JJ, Sahrawy M, Gorgé JL. Plant Mol Biol; 1996 Feb 06; 30(3):455-65. PubMed ID: 8605298 [Abstract] [Full Text] [Related]
15. Characterization of cysteine residues involved in the reductive activation and the structural stability of rapeseed (Brassica napus) chloroplast fructose-1,6-bisphosphatase. Rodriguez-Suarez RJ, Mora-García S, Wolosiuk RA. Biochem Biophys Res Commun; 1997 Mar 17; 232(2):388-93. PubMed ID: 9125187 [Abstract] [Full Text] [Related]
16. Redox modifications of spinach chloroplast fructose-1, 6-bisphosphatase. Chen Y, Xu GJ. Biochem Mol Biol Int; 1996 Aug 17; 39(5):941-8. PubMed ID: 8866011 [Abstract] [Full Text] [Related]
17. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents. Huppe HC, Buchanan BB. Z Naturforsch C J Biosci; 1989 Aug 17; 44(5-6):487-94. PubMed ID: 11536627 [Abstract] [Full Text] [Related]
18. Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Schürmann P, Wolosiuk RA. Biochim Biophys Acta; 1978 Jan 12; 522(1):130-8. PubMed ID: 202319 [Abstract] [Full Text] [Related]
19. Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase. Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP, Cherfils J. EMBO J; 1999 Dec 01; 18(23):6809-15. PubMed ID: 10581254 [Abstract] [Full Text] [Related]
20. Properties of oxidized and reduced spinach (Spinacia oleracea) chloroplast fructose-1,6-bisphosphatase activated by various agents. Chardot T, Meunier JC. Biochem J; 1991 Sep 15; 278 ( Pt 3)(Pt 3):787-91. PubMed ID: 1654892 [Abstract] [Full Text] [Related] Page: [Next] [New Search]