These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 11735989

  • 1. Dynamic scaling and freezing criteria in quasi-two-dimensional dispersions.
    Pesché R, Kollmann M, Nägele G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):052401. PubMed ID: 11735989
    [Abstract] [Full Text] [Related]

  • 2. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ, Heinen M, Holmqvist P, Nägele G.
    J Chem Phys; 2018 Apr 07; 148(13):134902. PubMed ID: 29626910
    [Abstract] [Full Text] [Related]

  • 3. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R, Rice SA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec 07; 68(6 Pt 1):061508. PubMed ID: 14754213
    [Abstract] [Full Text] [Related]

  • 4. Two-dimensional freezing criteria for crystallizing colloidal monolayers.
    Wang Z, Alsayed AM, Yodh AG, Han Y.
    J Chem Phys; 2010 Apr 21; 132(15):154501. PubMed ID: 20423183
    [Abstract] [Full Text] [Related]

  • 5. Dynamics in thermo-responsive nanogel crystals undergoing melting.
    Joshi RG, Tata BV, Brijitta J.
    J Chem Phys; 2013 Sep 28; 139(12):124901. PubMed ID: 24089798
    [Abstract] [Full Text] [Related]

  • 6. Stokesian dynamics study of quasi-two-dimensional suspensions confined between two parallel walls.
    Pesche R, Nagele G.
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct 28; 62(4 Pt B):5432-43. PubMed ID: 11089106
    [Abstract] [Full Text] [Related]

  • 7. Generic behavior of the hydrodynamic function of charged colloidal suspensions.
    Gapinski J, Patkowski A, Nägele G.
    J Chem Phys; 2010 Feb 07; 132(5):054510. PubMed ID: 20136325
    [Abstract] [Full Text] [Related]

  • 8. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths.
    Gapinski J, Nägele G, Patkowski A.
    J Chem Phys; 2014 Sep 28; 141(12):124505. PubMed ID: 25273449
    [Abstract] [Full Text] [Related]

  • 9. Non-ideal diffusion effects, short-range ordering, and unsteady-state effects strongly influence Brownian aggregation rates in concentrated dispersions of interacting spheres.
    Kelkar AV, Franses EI, Corti DS.
    J Chem Phys; 2015 Aug 21; 143(7):074706. PubMed ID: 26298147
    [Abstract] [Full Text] [Related]

  • 10. Long-time dynamics of concentrated charge-stabilized colloids.
    Holmqvist P, Nägele G.
    Phys Rev Lett; 2010 Feb 05; 104(5):058301. PubMed ID: 20366798
    [Abstract] [Full Text] [Related]

  • 11. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y, Swan JW, Zia RN.
    J Chem Phys; 2017 Mar 28; 146(12):124903. PubMed ID: 28388164
    [Abstract] [Full Text] [Related]

  • 12. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres.
    Stopper D, Thorneywork AL, Dullens RPA, Roth R.
    J Chem Phys; 2018 Mar 14; 148(10):104501. PubMed ID: 29544259
    [Abstract] [Full Text] [Related]

  • 13. Test of the universal scaling law of diffusion in colloidal monolayers.
    Ma X, Chen W, Wang Z, Peng Y, Han Y, Tong P.
    Phys Rev Lett; 2013 Feb 15; 110(7):078302. PubMed ID: 25166414
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S, Stark H, Klapp SH.
    J Phys Condens Matter; 2013 May 15; 25(19):195104. PubMed ID: 23587804
    [Abstract] [Full Text] [Related]

  • 15. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D, Fluerasu A, Moussaïd A, Zontone F, Cristofolini L, Madsen A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 15; 85(1 Pt 1):011402. PubMed ID: 22400568
    [Abstract] [Full Text] [Related]

  • 16. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E.
    Adv Colloid Interface Sci; 2013 Nov 15; 199-200():114-27. PubMed ID: 23916723
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Hydrodynamic interactions in quasi-two-dimensional colloidal suspensions.
    Santana-Solano J, Arauz-Lara JL.
    Phys Rev Lett; 2001 Jul 16; 87(3):038302. PubMed ID: 11461596
    [Abstract] [Full Text] [Related]

  • 20. Direct measurements of colloidal friction coefficients.
    Henderson S, Mitchell S, Bartlett P.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec 16; 64(6 Pt 1):061403. PubMed ID: 11736181
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.