These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 11743867
1. Photoelectrochemical cycle of bacteriorhodopsin. Kalaidzidis IV, Kaulen AD, Radionov AN, Khitrina LV. Biochemistry (Mosc); 2001 Nov; 66(11):1220-33. PubMed ID: 11743867 [Abstract] [Full Text] [Related]
2. Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. Kaulen AD. Biochim Biophys Acta; 2000 Aug 30; 1460(1):204-19. PubMed ID: 10984601 [Abstract] [Full Text] [Related]
3. Photocycle in the M-form in bacteriorhodopsin mutants devoid of primary proton acceptor Asp-85. Lukashev EP, Kolodner P. Membr Cell Biol; 2001 Aug 30; 14(6):715-25. PubMed ID: 11817568 [Abstract] [Full Text] [Related]
4. Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin. Yao B, Xu D, Hou X, Hu K, Wang A. J Biomed Opt; 2003 Jan 30; 8(1):48-52. PubMed ID: 12542379 [Abstract] [Full Text] [Related]
5. Characterization of the proton-transporting photocycle of pharaonis halorhodopsin. Kulcsár A, Groma GI, Lanyi JK, Váró G. Biophys J; 2000 Nov 30; 79(5):2705-13. PubMed ID: 11053142 [Abstract] [Full Text] [Related]
6. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin. Sass HJ, Gessenich R, Koch MH, Oesterhelt D, Dencher NA, Büldt G, Rapp G. Biophys J; 1998 Jul 30; 75(1):399-405. PubMed ID: 9649397 [Abstract] [Full Text] [Related]
7. Charge movements in the 13-cis photocycles of the bacteriorhodopsin mutants R82K and R82Q. Misra S, Ebrey TG, Crouch RK, Menick DR. Photochem Photobiol; 1997 Jun 30; 65(6):1039-44. PubMed ID: 9188284 [Abstract] [Full Text] [Related]
8. The assignment of the different infrared continuum absorbance changes observed in the 3000-1800-cm(-1) region during the bacteriorhodopsin photocycle. Garczarek F, Wang J, El-Sayed MA, Gerwert K. Biophys J; 2004 Oct 30; 87(4):2676-82. PubMed ID: 15298873 [Abstract] [Full Text] [Related]
9. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Ludmann K, Gergely C, Dér A, Váró G. Biophys J; 1998 Dec 30; 75(6):3120-6. PubMed ID: 9826632 [Abstract] [Full Text] [Related]
10. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements. Zimányi L, Cao Y, Chang M, Ni B, Needleman R, Lanyi JK. Photochem Photobiol; 1992 Dec 30; 56(6):1049-55. PubMed ID: 1337212 [Abstract] [Full Text] [Related]
11. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle. Cao Y, Brown LS, Sasaki J, Maeda A, Needleman R, Lanyi JK. Biophys J; 1995 Apr 30; 68(4):1518-30. PubMed ID: 7787037 [Abstract] [Full Text] [Related]
12. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle. Wang J, El-Sayed MA. Biophys J; 2000 Apr 30; 78(4):2031-6. PubMed ID: 10733981 [Abstract] [Full Text] [Related]
13. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biophys J; 1998 Sep 30; 75(3):1455-65. PubMed ID: 9726947 [Abstract] [Full Text] [Related]
17. Infrared methods for monitoring the protonation state of carboxylic amino acids in the photocycle of bacteriorhodopsin. Dioumaev AK. Biochemistry (Mosc); 2001 Nov 30; 66(11):1269-76. PubMed ID: 11743871 [Abstract] [Full Text] [Related]