These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 11758928

  • 21. A novel histidine kinase inhibitor regulating development in Bacillus subtilis.
    Wang L, Grau R, Perego M, Hoch JA.
    Genes Dev; 1997 Oct 01; 11(19):2569-79. PubMed ID: 9334321
    [Abstract] [Full Text] [Related]

  • 22. Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth.
    Okada A, Igarashi M, Okajima T, Kinoshita N, Umekita M, Sawa R, Inoue K, Watanabe T, Doi A, Martin A, Quinn J, Nishimura Y, Utsumi R.
    J Antibiot (Tokyo); 2010 Feb 01; 63(2):89-94. PubMed ID: 20057515
    [Abstract] [Full Text] [Related]

  • 23. The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F.
    Cunningham KA, Burkholder WF.
    Mol Microbiol; 2009 Feb 01; 71(3):659-77. PubMed ID: 19040634
    [Abstract] [Full Text] [Related]

  • 24. A sensory complex consisting of an ATP-binding cassette transporter and a two-component regulatory system controls bacitracin resistance in Bacillus subtilis.
    Dintner S, Heermann R, Fang C, Jung K, Gebhard S.
    J Biol Chem; 2014 Oct 03; 289(40):27899-910. PubMed ID: 25118291
    [Abstract] [Full Text] [Related]

  • 25. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy.
    Fabret C, Hoch JA.
    J Bacteriol; 1998 Dec 03; 180(23):6375-83. PubMed ID: 9829949
    [Abstract] [Full Text] [Related]

  • 26. Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans.
    Devi SN, Kiehler B, Haggett L, Fujita M.
    J Bacteriol; 2015 Aug 03; 197(16):2675-84. PubMed ID: 26055117
    [Abstract] [Full Text] [Related]

  • 27. Characterization of H-box region mutants of WalK inert to the action of waldiomycin in Bacillus subtilis.
    Kato A, Ueda S, Oshima T, Inukai Y, Okajima T, Igarashi M, Eguchi Y, Utsumi R.
    J Gen Appl Microbiol; 2017 Sep 05; 63(4):212-221. PubMed ID: 28674376
    [Abstract] [Full Text] [Related]

  • 28. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus.
    Fakhruzzaman M, Inukai Y, Yanagida Y, Kino H, Igarashi M, Eguchi Y, Utsumi R.
    J Gen Appl Microbiol; 2015 Sep 05; 61(5):177-84. PubMed ID: 26582287
    [Abstract] [Full Text] [Related]

  • 29. Biological evaluation of halogenated thiazolo[3,2-a]pyrimidin-3-one carboxylic acid derivatives targeting the YycG histidine kinase.
    Zhao D, Chen C, Liu H, Zheng L, Tong Y, Qu D, Han S.
    Eur J Med Chem; 2014 Nov 24; 87():500-7. PubMed ID: 25282671
    [Abstract] [Full Text] [Related]

  • 30. 6-Anilinouracil-based inhibitors of Bacillus subtilis DNA polymerase III: antipolymerase and antimicrobial structure-activity relationships based on substitution at uracil N3.
    Tarantino PM, Zhi C, Gambino JJ, Wright GE, Brown NC.
    J Med Chem; 1999 Jun 03; 42(11):2035-40. PubMed ID: 10354411
    [Abstract] [Full Text] [Related]

  • 31. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis.
    Msadek T.
    Trends Microbiol; 1999 May 03; 7(5):201-7. PubMed ID: 10354595
    [Abstract] [Full Text] [Related]

  • 32. Interacting proteins of the essential two-component system YycFG in Bacillus subtilis.
    Wu X, Song Q, Han A.
    J Basic Microbiol; 2019 Sep 03; 59(9):950-959. PubMed ID: 31339578
    [Abstract] [Full Text] [Related]

  • 33. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system.
    Zhao H, Tang L.
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Apr 01; 65(Pt 4):346-9. PubMed ID: 19342776
    [Abstract] [Full Text] [Related]

  • 34. P-glycoprotein mediates resistance to histidine kinase inhibitors.
    Arora S, Yang JM, Utsumi R, Okamoto T, Kitayama T, Hait WN.
    Mol Pharmacol; 2004 Sep 01; 66(3):460-7. PubMed ID: 15322237
    [Abstract] [Full Text] [Related]

  • 35. Protein kinases as antibacterial targets.
    Schreiber M, Res I, Matter A.
    Curr Opin Cell Biol; 2009 Apr 01; 21(2):325-30. PubMed ID: 19246185
    [Abstract] [Full Text] [Related]

  • 36. Purification and characterization of Bacillus subtilis CheY.
    Bischoff DS, Bourret RB, Kirsch ML, Ordal GW.
    Biochemistry; 1993 Sep 07; 32(35):9256-61. PubMed ID: 8369293
    [Abstract] [Full Text] [Related]

  • 37. Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima.
    Foster JE, Sheng Q, McClain JR, Bures M, Nicas TI, Henry K, Winkler ME, Gilmour R.
    Microbiology (Reading); 2004 Apr 07; 150(Pt 4):885-896. PubMed ID: 15073298
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. A role for the essential YycG sensor histidine kinase in sensing cell division.
    Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H.
    Mol Microbiol; 2011 Jan 07; 79(2):503-22. PubMed ID: 21219466
    [Abstract] [Full Text] [Related]

  • 40. Targeting two-component signal transduction: a novel drug discovery system.
    Okada A, Gotoh Y, Watanabe T, Furuta E, Yamamoto K, Utsumi R.
    Methods Enzymol; 2007 Jan 07; 422():386-95. PubMed ID: 17628150
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.