These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


86 related items for PubMed ID: 11768531

  • 1. Complementation of the Magnaporthe grisea deltacpkA mutation by the Blumeria graminis PKA-c gene: functional genetic analysis of an obligate plant pathogen.
    Bindslev L, Kershaw MJ, Talbot NJ, Oliver RP.
    Mol Plant Microbe Interact; 2001 Dec; 14(12):1368-75. PubMed ID: 11768531
    [Abstract] [Full Text] [Related]

  • 2. Stable transformation of erysiphe graminis an obligate biotrophic pathogen of barley.
    Chaure P, Gurr SJ, Spanu P.
    Nat Biotechnol; 2000 Feb; 18(2):205-7. PubMed ID: 10657129
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Involvement of cAMP and protein kinase A in conidial differentiation by Erysiphe graminis f. sp. hordei.
    Hall AA, Bindslev L, Rouster J, Rasmussen SW, Oliver RP, Gurr SJ.
    Mol Plant Microbe Interact; 1999 Nov; 12(11):960-8. PubMed ID: 10550894
    [Abstract] [Full Text] [Related]

  • 5. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ.
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [Abstract] [Full Text] [Related]

  • 6. Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE).
    Thomas SW, Glaring MA, Rasmussen SW, Kinane JT, Oliver RP.
    Mol Plant Microbe Interact; 2002 Aug; 15(8):847-56. PubMed ID: 12182343
    [Abstract] [Full Text] [Related]

  • 7. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis.
    Prats E, Carver TL, Mur LA.
    Res Microbiol; 2008 Aug; 159(6):476-80. PubMed ID: 18554873
    [Abstract] [Full Text] [Related]

  • 8. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T, Yamaguchi S, Saitoh K, Teraoka T, Yamaguchi I.
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [Abstract] [Full Text] [Related]

  • 9. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea.
    Gupta A, Chattoo BB.
    Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923
    [Abstract] [Full Text] [Related]

  • 10. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic.
    Yang Z, Dickman MB.
    Mol Plant Microbe Interact; 1999 May; 12(5):430-9. PubMed ID: 10226376
    [Abstract] [Full Text] [Related]

  • 11. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea.
    Kawamura C, Moriwaki J, Kimura N, Fujita Y, Fuji S, Hirano T, Koizumi S, Tsuge T.
    Mol Plant Microbe Interact; 1997 May; 10(4):446-53. PubMed ID: 9150594
    [Abstract] [Full Text] [Related]

  • 12. Disruption of the alternative oxidase gene in Magnaporthe grisea and its impact on host infection.
    Avila-Adame C, Köller W.
    Mol Plant Microbe Interact; 2002 May; 15(5):493-500. PubMed ID: 12036280
    [Abstract] [Full Text] [Related]

  • 13. Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei.
    Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel KH.
    Mol Plant Microbe Interact; 2004 Jan; 17(1):118-23. PubMed ID: 14714875
    [Abstract] [Full Text] [Related]

  • 14. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions.
    Hu P, Meng Y, Wise RP.
    Mol Plant Microbe Interact; 2009 Mar; 22(3):311-20. PubMed ID: 19245325
    [Abstract] [Full Text] [Related]

  • 15. Acquired resistance functions in mlo barley, which is hypersusceptible to Magnaporthe grisea.
    Jarosch B, Jansen M, Schaffrath U.
    Mol Plant Microbe Interact; 2003 Feb; 16(2):107-14. PubMed ID: 12575744
    [Abstract] [Full Text] [Related]

  • 16. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line.
    Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A.
    Theor Appl Genet; 2003 Jan; 106(2):353-62. PubMed ID: 12582863
    [Abstract] [Full Text] [Related]

  • 17. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection.
    Felle HH, Waller F, Molitor A, Kogel KH.
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1179-85. PubMed ID: 19656052
    [Abstract] [Full Text] [Related]

  • 18. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP, Feng XX, Liu XH, Lu Q, Wang HK, Lin FC.
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [Abstract] [Full Text] [Related]

  • 19. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S, Ahn IP, Rho HS, Lee YH.
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [Abstract] [Full Text] [Related]

  • 20. MGOS: A resource for studying Magnaporthe grisea and Oryza sativa interactions.
    Soderlund C, Haller K, Pampanwar V, Ebbole D, Farman M, Orbach MJ, Wang GL, Wing R, Xu JR, Brown D, Mitchell T, Dean R.
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1055-61. PubMed ID: 17022169
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.