These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 11776315

  • 1. Identification of critical residues on thrombin mediating its interaction with fibrin.
    Hall SW, Gibbs CS, Leung LL.
    Thromb Haemost; 2001 Dec; 86(6):1466-74. PubMed ID: 11776315
    [Abstract] [Full Text] [Related]

  • 2. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A, Di Cera E.
    Biochemistry; 1996 Apr 09; 35(14):4417-26. PubMed ID: 8605191
    [Abstract] [Full Text] [Related]

  • 3. Fibrinogen St. Gallen I (gamma 292 Gly--> Val): evidence for structural alterations causing defective polymerization and fibrinogenolysis.
    Stucki B, Schmutz P, Schmid L, Haeberli A, Lämmle B, Furlan M.
    Thromb Haemost; 1999 Feb 09; 81(2):268-74. PubMed ID: 10064005
    [Abstract] [Full Text] [Related]

  • 4. A cluster of basic amino acid residues in the gamma370-381 sequence of fibrinogen comprises a binding site for platelet integrin alpha(IIb)beta3 (glycoprotein IIb/IIIa).
    Podolnikova NP, Gorkun OV, Loreth RM, Yee VC, Lord ST, Ugarova TP.
    Biochemistry; 2005 Dec 27; 44(51):16920-30. PubMed ID: 16363805
    [Abstract] [Full Text] [Related]

  • 5. The amino acid sequence in fibrin responsible for high affinity thrombin binding.
    Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW.
    Thromb Haemost; 2001 Mar 27; 85(3):470-4. PubMed ID: 11307817
    [Abstract] [Full Text] [Related]

  • 6. Thrombin specificity.
    Guillin MC, Bezeaud A, Bouton MC, Jandrot-Perrus M.
    Thromb Haemost; 1995 Jul 27; 74(1):129-33. PubMed ID: 8578445
    [Abstract] [Full Text] [Related]

  • 7. Update on antithrombin I (fibrin).
    Mosesson MW.
    Thromb Haemost; 2007 Jul 27; 98(1):105-8. PubMed ID: 17597999
    [Abstract] [Full Text] [Related]

  • 8. Allosteric changes of thrombin catalytic site induced by interaction of bothrojaracin with anion-binding exosites I and II.
    Monteiro RQ, Rapôso JG, Wisner A, Guimarães JA, Bon C, Zingali RB.
    Biochem Biophys Res Commun; 1999 Sep 07; 262(3):819-22. PubMed ID: 10471408
    [Abstract] [Full Text] [Related]

  • 9. Rational engineering of activity and specificity in a serine protease.
    Dang QD, Guinto ER, di Cera E.
    Nat Biotechnol; 1997 Feb 07; 15(2):146-9. PubMed ID: 9035139
    [Abstract] [Full Text] [Related]

  • 10. Conformational analysis of gamma' peptide (410-427) interactions with thrombin anion binding exosite II.
    Sabo TM, Farrell DH, Maurer MC.
    Biochemistry; 2006 Jun 20; 45(24):7434-45. PubMed ID: 16768439
    [Abstract] [Full Text] [Related]

  • 11. Functional mapping of the surface residues of human thrombin.
    Tsiang M, Jain AK, Dunn KE, Rojas ME, Leung LL, Gibbs CS.
    J Biol Chem; 1995 Jul 14; 270(28):16854-63. PubMed ID: 7622501
    [Abstract] [Full Text] [Related]

  • 12. The receptor for the globular "heads" of C1q, gC1q-R, binds to fibrinogen/fibrin and impairs its polymerization.
    Lu PD, Galanakis DK, Ghebrehiwet B, Peerschke EI.
    Clin Immunol; 1999 Mar 14; 90(3):360-7. PubMed ID: 10075865
    [Abstract] [Full Text] [Related]

  • 13. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes.
    Tasset DM, Kubik MF, Steiner W.
    J Mol Biol; 1997 Oct 10; 272(5):688-98. PubMed ID: 9368651
    [Abstract] [Full Text] [Related]

  • 14. Normal binding of calcium to five fibrinogen variants with mutations in the carboxy terminal part of the gamma-chain.
    Furlan M, Stucki B, Steinmann C, Jungo M, Lämmle B.
    Thromb Haemost; 1996 Sep 10; 76(3):377-83. PubMed ID: 8883274
    [Abstract] [Full Text] [Related]

  • 15. Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization.
    Mosesson MW, Hernandez I, Siebenlist KR.
    Biophys Chem; 2004 Jul 01; 110(1-2):93-100. PubMed ID: 15223147
    [Abstract] [Full Text] [Related]

  • 16. Changes in adsorbed fibrinogen upon conversion to fibrin.
    Evans-Nguyen KM, Fuierer RR, Fitchett BD, Tolles LR, Conboy JC, Schoenfisch MH.
    Langmuir; 2006 May 23; 22(11):5115-21. PubMed ID: 16700602
    [Abstract] [Full Text] [Related]

  • 17. Binding of synthetic B knobs to fibrinogen changes the character of fibrin and inhibits its ability to activate tissue plasminogen activator and its destruction by plasmin.
    Doolittle RF, Pandi L.
    Biochemistry; 2006 Feb 28; 45(8):2657-67. PubMed ID: 16489759
    [Abstract] [Full Text] [Related]

  • 18. Characterization of the interaction of recombinant apolipoprotein(a) with modified fibrinogen surfaces and fibrin clots.
    Sangrar W, Koschinsky ML.
    Biochem Cell Biol; 2000 Feb 28; 78(4):519-25. PubMed ID: 11012092
    [Abstract] [Full Text] [Related]

  • 19. The Na+ binding channel of human coagulation proteases: novel insights on the structure and allosteric modulation revealed by molecular surface analysis.
    Silva FP, Antunes OA, de Alencastro RB, De Simone SG.
    Biophys Chem; 2006 Feb 01; 119(3):282-94. PubMed ID: 16288954
    [Abstract] [Full Text] [Related]

  • 20. Modes and consequences of thrombin's interaction with fibrin.
    Fredenburgh JC, Stafford AR, Pospisil CH, Weitz JI.
    Biophys Chem; 2004 Dec 20; 112(2-3):277-84. PubMed ID: 15572259
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.