These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 11785422
21. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mutch LA, Young JP. Mol Ecol; 2004 Aug; 13(8):2435-44. PubMed ID: 15245415 [Abstract] [Full Text] [Related]
22. Infection of clover by plant growth promoting Pseudomonas fluorescens strain 267 and Rhizobium leguminosarum bv. trifolii studied by mTn5-gusA. Marek-Kozaczuk M, Kopcińska J, Lotocka B, Golinowski W, Skorupska A. Antonie Van Leeuwenhoek; 2000 Jul; 78(1):1-11. PubMed ID: 11016690 [Abstract] [Full Text] [Related]
23. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Luciński R, Polcyn W, Ratajczak L. Acta Biochim Pol; 2002 Jul; 49(2):537-46. PubMed ID: 12362996 [Abstract] [Full Text] [Related]
24. Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. van Spronsen PC, van Brussel AA, Kijne JW. Eur J Cell Biol; 1995 Dec; 68(4):463-9. PubMed ID: 8690027 [Abstract] [Full Text] [Related]
25. Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Díaz CL, Spaink HP, Kijne JW. Mol Plant Microbe Interact; 2000 Mar; 13(3):268-76. PubMed ID: 10707352 [Abstract] [Full Text] [Related]
26. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mathesius U, Charon C, Rolfe BG, Kondorosi A, Crespi M. Mol Plant Microbe Interact; 2000 Jun; 13(6):617-28. PubMed ID: 10830261 [Abstract] [Full Text] [Related]
27. [Plasmid pSym1-32 from Rhizobium leguminosarum bv. viceae, controlling nitrogen-fixing activity, effectiveness of symbiosis, competitiveness, and acid tolerance]. Kurchak ON, Provorov NA, Simarov BV. Genetika; 2001 Sep; 37(9):1225-32. PubMed ID: 11642125 [Abstract] [Full Text] [Related]
28. Genetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium. Palacios JM, Manyani H, Martínez M, Ureta AC, Brito B, Báscones E, Rey L, Imperial J, Ruiz-Argüeso T. Biochem Soc Trans; 2005 Feb; 33(Pt 1):94-6. PubMed ID: 15667275 [Abstract] [Full Text] [Related]
29. Some environmental factors influencing the survival of Rhizobium leguminosarum bv. viceae. Bayoumi HE, Bíró B, Kecskés M. Acta Biol Hung; 1995 Feb; 46(1):17-30. PubMed ID: 8714760 [Abstract] [Full Text] [Related]
30. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis. Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP. Sci Total Environ; 2014 Nov 01; 497-498():78-90. PubMed ID: 25124056 [Abstract] [Full Text] [Related]
31. Host-dependent expression of Rhizobium leguminosarum bv. viciae hydrogenase is controlled at transcriptional and post-transcriptional levels in legume nodules. Brito B, Toffanin A, Prieto RI, Imperial J, Ruiz-Argüeso T, Palacios JM. Mol Plant Microbe Interact; 2008 May 01; 21(5):597-604. PubMed ID: 18393619 [Abstract] [Full Text] [Related]
32. The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation. Schlüter A, Nöhlen M, Krämer M, Defez R, Priefer UB. Microbiology (Reading); 2000 Nov 01; 146 ( Pt 11)():2987-2996. PubMed ID: 11065377 [Abstract] [Full Text] [Related]
33. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Trainer MA, Charles TC. Appl Microbiol Biotechnol; 2006 Jul 01; 71(4):377-86. PubMed ID: 16703322 [Abstract] [Full Text] [Related]
34. Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization. Mazur A, Król JE, Wielbo J, Urbanik-Sypniewska T, Skorupska A. Mol Plant Microbe Interact; 2002 Apr 01; 15(4):388-97. PubMed ID: 12026178 [Abstract] [Full Text] [Related]
35. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Wani PA, Khan MS, Zaidi A. Bull Environ Contam Toxicol; 2008 Aug 01; 81(2):152-8. PubMed ID: 18368281 [Abstract] [Full Text] [Related]
36. Large genotypic variation but small variation in N2 fixation among rhizobia nodulating red clover in soils of northern Scandinavia. Duodu S, Carlsson G, Huss-Danell K, Svenning MM. J Appl Microbiol; 2007 Jun 01; 102(6):1625-35. PubMed ID: 17578428 [Abstract] [Full Text] [Related]
37. The function of three indigenous plasmids in Mesorhizobium huakuii 2020 and its symbiotic interaction with Sym pJB5JI of Rhizobium leguminosarum. Yang C, Li Y, Wei L, Cheng G, Zhou J. Sci China C Life Sci; 2008 Apr 01; 51(4):353-61. PubMed ID: 18368313 [Abstract] [Full Text] [Related]
38. Symbiosis of selected Rhizobium leguminosarum bv. viciae strains with diverse pea genotypes: effects on biological nitrogen fixation. Yang C, Bueckert R, Schoenau J, Diederichsen A, Zakeri H, Warkentin T. Can J Microbiol; 2017 Nov 01; 63(11):909-919. PubMed ID: 28922610 [Abstract] [Full Text] [Related]
39. Role of symbiotic auxotrophy in the Rhizobium-legume symbioses. Prell J, Bourdès A, Kumar S, Lodwig E, Hosie A, Kinghorn S, White J, Poole P. PLoS One; 2010 Nov 11; 5(11):e13933. PubMed ID: 21085630 [Abstract] [Full Text] [Related]
40. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. van der Heijden MG, Bakker R, Verwaal J, Scheublin TR, Rutten M, van Logtestijn R, Staehelin C. FEMS Microbiol Ecol; 2006 May 11; 56(2):178-87. PubMed ID: 16629748 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]