These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 11796678
1. Role of kallikrein-kininogen system in insulin-stimulated glucose transport after muscle contractions. Dumke CL, Kim J, Arias EB, Cartee GD. J Appl Physiol (1985); 2002 Feb; 92(2):657-64. PubMed ID: 11796678 [Abstract] [Full Text] [Related]
2. Does insulin release kinins in rats? Damas J, Garbacki N, Lefèbvre PJ. Eur J Pharmacol; 2005 Nov 21; 525(1-3):154-60. PubMed ID: 16297383 [Abstract] [Full Text] [Related]
3. Rat uterine contraction by kallikrein and its dependence on uterine kininogen. Figueiredo AF, Salgado AH, Siqueira GR, Velloso CR, Beraldo WT. Biochem Pharmacol; 1990 Feb 15; 39(4):763-7. PubMed ID: 1689579 [Abstract] [Full Text] [Related]
4. Postexercise skeletal muscle glucose transport is normal in kininogen-deficient rats. Schweitzer GG, Cartee GD. Med Sci Sports Exerc; 2011 Jul 15; 43(7):1148-53. PubMed ID: 21200341 [Abstract] [Full Text] [Related]
5. A plant Kunitz-type inhibitor mimics bradykinin-induced cytosolic calcium increase and intestinal smooth muscle contraction. Andrade SS, Smaili SS, Monteforte PT, Miranda A, Kouyoumdjian M, Sampaio MU, Lopes GS, Oliva ML. Biol Chem; 2012 Sep 15; 393(9):943-57. PubMed ID: 22944694 [Abstract] [Full Text] [Related]
6. The myostimulating effect of tissue kallikrein on rat uterus. Damas J, Bourdon V, Pinto JC. Naunyn Schmiedebergs Arch Pharmacol; 1995 May 15; 351(5):535-41. PubMed ID: 7643918 [Abstract] [Full Text] [Related]
7. Tissue kallikrein and bradykinin do not have direct insulin-like actions on skeletal muscle glucose utilization. Shimojo N, Pickens TG, Margolius HS, Mayfield RK. Biol Chem Hoppe Seyler; 1987 Oct 15; 368(10):1355-61. PubMed ID: 3322322 [Abstract] [Full Text] [Related]
8. Bradykinin does not mediate activation of glucose transport by muscle contraction. Constable SH, Favier RJ, Uhl J, Holloszy JO. J Appl Physiol (1985); 1986 Sep 15; 61(3):881-4. PubMed ID: 2428801 [Abstract] [Full Text] [Related]
9. Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature. Tsuchida S, Miyazaki Y, Matsusaka T, Hunley TE, Inagami T, Fogo A, Ichikawa I. Kidney Int; 1999 Aug 15; 56(2):509-16. PubMed ID: 10432390 [Abstract] [Full Text] [Related]
10. Postcontraction insulin sensitivity: relationship with contraction protocol, glycogen concentration, and 5' AMP-activated protein kinase phosphorylation. Kim J, Solis RS, Arias EB, Cartee GD. J Appl Physiol (1985); 2004 Feb 15; 96(2):575-83. PubMed ID: 14555687 [Abstract] [Full Text] [Related]
11. Potentiation of insulin stimulation of hexose transport by kallikrein and bradykinin in isolated rat adipocytes. Goldman J, Pfister D, Vukmirovich R. Mol Cell Endocrinol; 1987 Apr 15; 50(3):183-91. PubMed ID: 3552783 [Abstract] [Full Text] [Related]
12. Further characterization of monoclonal antibodies against rat plasma kallikrein, rat low molecular weight kininogen and synthetic bradykinin. Bedi GS, Back N. Adv Exp Med Biol; 1989 Apr 15; 247B():223-30. PubMed ID: 2610064 [Abstract] [Full Text] [Related]
13. Decreased contraction-stimulated glucose transport in isolated epitrochlearis muscles of pregnant rats. Sancho R, Kim J, Cartee GD. J Appl Physiol (1985); 2005 Mar 15; 98(3):1021-7. PubMed ID: 15531563 [Abstract] [Full Text] [Related]
14. Changes in blood glucose and plasma insulin levels induced by bradykinin in anaesthetized rats. Damas J, Hallet C, Lefebvre PJ. Br J Pharmacol; 2001 Nov 15; 134(6):1312-8. PubMed ID: 11704652 [Abstract] [Full Text] [Related]
15. Both B1R and B2R act as intermediate signaling molecules in high glucose-induced stimulation of glutamate uptake in ARPE cells. Lim SK, Han HJ, Kim KY, Park SH. J Cell Physiol; 2009 Dec 15; 221(3):677-87. PubMed ID: 19725054 [Abstract] [Full Text] [Related]
16. Kallikrein-induced uterine contraction independent of kinin formation. Chao J, Buse J, Shimamoto K, Margolius HS. Proc Natl Acad Sci U S A; 1981 Oct 15; 78(10):6154-7. PubMed ID: 6947218 [Abstract] [Full Text] [Related]
17. Insulin sensitivity, clearance and release in kininogen-deficient rats. Damas J, Bourdon V, Lefebvre PJ. Exp Physiol; 1999 May 15; 84(3):549-57. PubMed ID: 10362853 [Abstract] [Full Text] [Related]
18. Evidence for a possible role of the brain kallikrein-kinin system in the modulation of the cerebral circulation. Kamitani T, Little MH, Ellis EF. Circ Res; 1985 Oct 15; 57(4):545-52. PubMed ID: 2412721 [Abstract] [Full Text] [Related]
19. Potential role of kinins in the effects of taurine in high-fructose-fed rats. Nandhini AT, Thirunavukkarasu V, Anuradha CV. Can J Physiol Pharmacol; 2004 Jan 15; 82(1):1-8. PubMed ID: 15052299 [Abstract] [Full Text] [Related]
20. Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle. Iwanaka N, Egawa T, Satoubu N, Karaike K, Ma X, Masuda S, Hayashi T. J Appl Physiol (1985); 2010 Feb 15; 108(2):274-82. PubMed ID: 19940100 [Abstract] [Full Text] [Related] Page: [Next] [New Search]