These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 11798310
1. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters. Sobolev A, Franssen MC, Vigante B, Cekavicus B, Zhalubovskis R, Kooijman H, Spek AL, Duburs G, de Groot A. J Org Chem; 2002 Jan 25; 67(2):401-10. PubMed ID: 11798310 [Abstract] [Full Text] [Related]
2. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives. Ammazzalorso A, Amoroso R, Bettoni G, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Tricca ML. Chirality; 2008 Feb 25; 20(2):115-8. PubMed ID: 18074337 [Abstract] [Full Text] [Related]
3. Molecular basis for enantioselectivity of lipase from Chromobacterium viscosum toward the diesters of 2,3-dihydro-3-(4'-hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol. Gascoyne DG, Finkbeiner HL, Chan KP, Gordon JL, Stewart KR, Kazlauskas RJ. J Org Chem; 2001 May 04; 66(9):3041-8. PubMed ID: 11325269 [Abstract] [Full Text] [Related]
4. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Ozyilmaz E, Ascioglu S, Yilmaz M. Int J Biol Macromol; 2021 Apr 01; 175():79-86. PubMed ID: 33548316 [Abstract] [Full Text] [Related]
12. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase. Takaç S, Unlü AE. Prep Biochem Biotechnol; 2009 Jan 25; 39(2):124-41. PubMed ID: 19291575 [Abstract] [Full Text] [Related]
13. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases. Botta M, Cernia E, Corelli F, Manetti F, Soro S. Biochim Biophys Acta; 1997 Feb 08; 1337(2):302-10. PubMed ID: 9048908 [Abstract] [Full Text] [Related]
14. Diversity-oriented synthesis of 1-substituted 4-aryl-6-oxo-1,6-dihydropyridine-3-carboxamides. Baškovč J, Dahmann G, Golobič A, Grošelj U, Kočar D, Stanovnik B, Svete J. ACS Comb Sci; 2012 Sep 10; 14(9):513-9. PubMed ID: 22872092 [Abstract] [Full Text] [Related]
15. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Ozyilmaz E, Bayrakci M, Yilmaz M. Bioorg Chem; 2016 Apr 10; 65():1-8. PubMed ID: 26698535 [Abstract] [Full Text] [Related]
16. Synthesis of optically active vicinal fluorohydrins by lipase-catalyzed deracemization. Wölker D, Haufe G. J Org Chem; 2002 May 03; 67(9):3015-21. PubMed ID: 11975561 [Abstract] [Full Text] [Related]