These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 11801412

  • 1. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM.
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [Abstract] [Full Text] [Related]

  • 2. A fundamental model of quasi-static wheelchair biomechanics.
    Leary M, Gruijters J, Mazur M, Subic A, Burton M, Fuss FK.
    Med Eng Phys; 2012 Nov; 34(9):1278-86. PubMed ID: 22763021
    [Abstract] [Full Text] [Related]

  • 3. A 2-D model of wheelchair propulsion.
    Morrow DA, Guo LY, Zhao KD, Su FC, An KN.
    Disabil Rehabil; 2012 Nov; 25(4-5):192-6. PubMed ID: 12623626
    [Abstract] [Full Text] [Related]

  • 4. A theoretical analysis of the influence of wheelchair seat position on upper extremity demand.
    Slowik JS, Neptune RR.
    Clin Biomech (Bristol); 2013 Apr; 28(4):378-85. PubMed ID: 23608478
    [Abstract] [Full Text] [Related]

  • 5. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ, Vegter RJK, van der Scheer JW, Hartog J, de Groot S, de Vries W, Arnet U, van der Woude LHV, Veeger DHEJ.
    Clin Biomech (Bristol); 2018 May; 54():54-61. PubMed ID: 29554550
    [Abstract] [Full Text] [Related]

  • 6. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML, Baldwin M, Cooper RA, Koontz A, Chan L.
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [Abstract] [Full Text] [Related]

  • 7. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.
    Mallakzadeh M, Akbari H.
    J Med Signals Sens; 2014 Oct; 4(4):256-66. PubMed ID: 25426429
    [Abstract] [Full Text] [Related]

  • 8. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P, Louis N.
    Clin Biomech (Bristol); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [Abstract] [Full Text] [Related]

  • 9. The effect of seat position on wheelchair propulsion biomechanics.
    Kotajarvi BR, Sabick MB, An KN, Zhao KD, Kaufman KR, Basford JR.
    J Rehabil Res Dev; 2004 May; 41(3B):403-14. PubMed ID: 15543458
    [Abstract] [Full Text] [Related]

  • 10. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ, Weimar WH, Sheth PN, Brubaker CE.
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [Abstract] [Full Text] [Related]

  • 11. Seat height in handrim wheelchair propulsion.
    van der Woude LH, Veeger DJ, Rozendal RH, Sargeant TJ.
    J Rehabil Res Dev; 1989 Mar; 26(4):31-50. PubMed ID: 2600867
    [Abstract] [Full Text] [Related]

  • 12. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C, Vaslin P, Lavaste F, de Saint Remy N, Cid M.
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [Abstract] [Full Text] [Related]

  • 13. Biomechanics and physiology in active manual wheelchair propulsion.
    van der Woude LH, Veeger HE, Dallmeijer AJ, Janssen TW, Rozendaal LA.
    Med Eng Phys; 2001 Dec; 23(10):713-33. PubMed ID: 11801413
    [Abstract] [Full Text] [Related]

  • 14. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ, Lamoth CJ, de Groot S, Veeger DH, van der Woude LH.
    J Neuroeng Rehabil; 2013 Jan 29; 10():9. PubMed ID: 23360756
    [Abstract] [Full Text] [Related]

  • 15. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH.
    J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389
    [Abstract] [Full Text] [Related]

  • 16. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.
    Bertolaccini GDS, Carvalho Filho IFP, Christofoletti G, Paschoarelli LC, Medola FO.
    Int J Occup Saf Ergon; 2018 Jun 10; 24(2):311-315. PubMed ID: 28278008
    [Abstract] [Full Text] [Related]

  • 17. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA, Jahanian O, Schnorenberg AJ, Hsiao-Wecksler ET.
    Med Eng Phys; 2019 Aug 10; 70():1-8. PubMed ID: 31285137
    [Abstract] [Full Text] [Related]

  • 18. Increased Seat Dump Angle in a Manual Wheelchair Is Associated With Changes in Thoracolumbar Lordosis and Scapular Kinematics During Propulsion.
    Cloud BA, Zhao KD, Ellingson AM, Nassr A, Windebank AJ, An KN.
    Arch Phys Med Rehabil; 2017 Oct 10; 98(10):2021-2027.e2. PubMed ID: 28322758
    [Abstract] [Full Text] [Related]

  • 19. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ, Lin PC, Guo LY, Su FC.
    J Biomech; 2011 Feb 03; 44(3):455-60. PubMed ID: 20980008
    [Abstract] [Full Text] [Related]

  • 20. Wheelchair propulsion: Force orientation and amplitude prediction with Recurrent Neural Network.
    Hernandez V, Rezzoug N, Gorce P, Venture G.
    J Biomech; 2018 Sep 10; 78():166-171. PubMed ID: 30097268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.