These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 11804161

  • 1. The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands.
    Headley TR, Huett DO, Davison L.
    Water Sci Technol; 2001; 44(11-12):77-84. PubMed ID: 11804161
    [Abstract] [Full Text] [Related]

  • 2. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO, Morris SG, Smith G, Hunt N.
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification.
    Bayley ML, Davison L, Headley TR.
    Water Sci Technol; 2003 Sep; 48(5):175-82. PubMed ID: 14621162
    [Abstract] [Full Text] [Related]

  • 4. On-site domestic wastewater treatment by reed bed in the moist subtropics.
    Davison L, Headley T, Edmonds M.
    Water Sci Technol; 2001 Sep; 44(11-12):353-60. PubMed ID: 11804118
    [Abstract] [Full Text] [Related]

  • 5. Long-term performance summary for the Boot Wetland Treatment System.
    Martin JR, Keller CH, Clarke RA, Knight RL.
    Water Sci Technol; 2001 Sep; 44(11-12):413-20. PubMed ID: 11804128
    [Abstract] [Full Text] [Related]

  • 6. [Studies on nitrogen and phosphorus enhancing removal in combined shale and steel slag subsurface constructed wetlands].
    Tan HX, Zhou Q, Yang DH.
    Huan Jing Ke Xue; 2006 Nov; 27(11):2182-7. PubMed ID: 17326423
    [Abstract] [Full Text] [Related]

  • 7. [Effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland].
    Tan HX, Liu YH, Zhou Q, Yang DH.
    Huan Jing Ke Xue; 2007 Jun; 28(6):1209-15. PubMed ID: 17674724
    [Abstract] [Full Text] [Related]

  • 8. Aspects of design, structure, performance and operation of reed beds--eight years' experience in northeastern New South Wales, Australia.
    Davison L, Headley T, Pratt K.
    Water Sci Technol; 2005 Jun; 51(10):129-38. PubMed ID: 16104414
    [Abstract] [Full Text] [Related]

  • 9. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L, Li Y, Biswas DK, Nian Y, Jiang G.
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [Abstract] [Full Text] [Related]

  • 10. Denitrification in free water surface wetlands receiving carbon supplements.
    Burgoon PS.
    Water Sci Technol; 2001 Apr; 44(11-12):163-9. PubMed ID: 11804089
    [Abstract] [Full Text] [Related]

  • 11. Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes.
    Jing SR, Lin YF, Wang TW, Lee DY.
    J Environ Qual; 2002 Apr; 31(2):690-6. PubMed ID: 11931463
    [Abstract] [Full Text] [Related]

  • 12. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M, Woolley A.
    Water Sci Technol; 2001 Apr; 44(11-12):303-10. PubMed ID: 11804111
    [Abstract] [Full Text] [Related]

  • 13. Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation.
    Zhao YQ, Sun G, Allen SJ.
    Sci Total Environ; 2004 Sep 01; 330(1-3):1-8. PubMed ID: 15325153
    [Abstract] [Full Text] [Related]

  • 14. Treatment of agricultural wastewater in two experimental combined constructed wetland systems in a tropical climate.
    Kantawanichkul S, Somprasert S, Aekasin U, Shutes RB.
    Water Sci Technol; 2003 Sep 01; 48(5):199-205. PubMed ID: 14621165
    [Abstract] [Full Text] [Related]

  • 15. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.
    Gervin L, Brix H.
    Water Sci Technol; 2001 Sep 01; 44(11-12):171-6. PubMed ID: 11804090
    [Abstract] [Full Text] [Related]

  • 16. Plants as ecosystem engineers in subsurface-flow treatment wetlands.
    Tanner CC.
    Water Sci Technol; 2001 Sep 01; 44(11-12):9-17. PubMed ID: 11804163
    [Abstract] [Full Text] [Related]

  • 17. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions.
    Zhang DQ, Tan SK, Gersberg RM, Zhu J, Sadreddini S, Li Y.
    J Environ Manage; 2012 Apr 15; 96(1):1-6. PubMed ID: 22208392
    [Abstract] [Full Text] [Related]

  • 18. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms).
    Jayaweera MW, Kasturiarachchi JC.
    Water Sci Technol; 2004 Apr 15; 50(6):217-25. PubMed ID: 15537010
    [Abstract] [Full Text] [Related]

  • 19. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study.
    Langergraber G.
    Water Sci Technol; 2005 Apr 15; 51(9):213-23. PubMed ID: 16042261
    [Abstract] [Full Text] [Related]

  • 20. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia.
    Headley TR, Davison L, Huett DO, Müller R.
    Water Res; 2012 Feb 01; 46(2):345-54. PubMed ID: 22127043
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.