These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 11813309

  • 1. Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures.
    Lépine F, Déziel E, Milot S, Villemur R.
    J Mass Spectrom; 2002 Jan; 37(1):41-6. PubMed ID: 11813309
    [Abstract] [Full Text] [Related]

  • 2. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH, Xu J, Gutierrez M, Yoo T, Cho YH, Yoon SC.
    J Biotechnol; 2011 Jan 10; 151(1):30-42. PubMed ID: 21029757
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP.
    Déziel E, Lépine F, Milot S, Villemur R.
    Biochim Biophys Acta; 2000 May 31; 1485(2-3):145-52. PubMed ID: 10832095
    [Abstract] [Full Text] [Related]

  • 6. Liquid chromatography/mass spectrometry for the identification and quantification of rhamnolipids.
    Abdel-Mawgoud AM, Lépine F, Déziel E.
    Methods Mol Biol; 2014 May 31; 1149():359-73. PubMed ID: 24818920
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid.
    Germer A, Tiso T, Müller C, Behrens B, Vosse C, Scholz K, Froning M, Hayen H, Blank LM.
    Appl Environ Microbiol; 2020 Mar 02; 86(6):. PubMed ID: 31924623
    [Abstract] [Full Text] [Related]

  • 9. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F.
    Appl Microbiol Biotechnol; 2017 Apr 02; 101(7):2865-2878. PubMed ID: 27988798
    [Abstract] [Full Text] [Related]

  • 10. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.
    Behrens B, Engelen J, Tiso T, Blank LM, Hayen H.
    Anal Bioanal Chem; 2016 Apr 02; 408(10):2505-14. PubMed ID: 26879646
    [Abstract] [Full Text] [Related]

  • 11. Liquid chromatography/tandem mass spectrometric analysis of 7,10-dihydroxyoctadecenoic acid, its isotopomers, and other 7,10-dihydroxy fatty acids formed by Pseudomonas aeruginosa 42A2.
    Nilsson T, Martínez E, Manresa A, Oliw EH.
    Rapid Commun Mass Spectrom; 2010 Mar 02; 24(6):777-83. PubMed ID: 20187080
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants.
    Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H.
    J Chromatogr A; 2016 Jul 15; 1455():125-132. PubMed ID: 27283098
    [Abstract] [Full Text] [Related]

  • 14. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K, Marsudi S, Unno H.
    Biotechnol Bioeng; 2002 Jun 20; 78(6):699-707. PubMed ID: 11992535
    [Abstract] [Full Text] [Related]

  • 15. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T.
    J Biotechnol; 2015 Jan 10; 193():45-51. PubMed ID: 25433178
    [Abstract] [Full Text] [Related]

  • 16. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates.
    Du J, Zhang A, Zhang X, Si X, Cao J.
    Bioresour Technol; 2019 Aug 10; 286():121380. PubMed ID: 31048264
    [Abstract] [Full Text] [Related]

  • 17. 12-Methyltetradecanoic acid, a branched-chain fatty acid, represses the extracellular production of surfactants required for swarming motility in Pseudomonas aeruginosa PAO1.
    Inoue T, Kuroda T, Ohara N.
    Jpn J Infect Dis; 2012 Aug 10; 65(2):126-31. PubMed ID: 22446119
    [Abstract] [Full Text] [Related]

  • 18. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour.
    Tremblay J, Richardson AP, Lépine F, Déziel E.
    Environ Microbiol; 2007 Oct 10; 9(10):2622-30. PubMed ID: 17803784
    [Abstract] [Full Text] [Related]

  • 19. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH, Xu MY, Sun W, Sun GP.
    Appl Biochem Biotechnol; 2011 Mar 10; 163(5):600-11. PubMed ID: 20830582
    [Abstract] [Full Text] [Related]

  • 20. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145.
    Chayabutra C, Ju LK.
    Biotechnol Prog; 2001 Mar 10; 17(3):419-23. PubMed ID: 11386860
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.