These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 118155

  • 1. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J.
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [Abstract] [Full Text] [Related]

  • 2. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J, Thomas TD.
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [Abstract] [Full Text] [Related]

  • 3. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J, Saier MH.
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [Abstract] [Full Text] [Related]

  • 4. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form.
    Lee R, Molskness T, Sandine WE, Elliker PR.
    Appl Microbiol; 1973 Dec; 26(6):951-8. PubMed ID: 4203337
    [Abstract] [Full Text] [Related]

  • 5. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J, Chassy BM.
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [Abstract] [Full Text] [Related]

  • 6. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R.
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [Abstract] [Full Text] [Related]

  • 7. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J, Chassy BM, Egan W.
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [Abstract] [Full Text] [Related]

  • 8. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J, Turner KW, Thomas TD.
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [Abstract] [Full Text] [Related]

  • 9. Galactose transport systems in Streptococcus lactis.
    Thompson J.
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [Abstract] [Full Text] [Related]

  • 10. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH, McKay LL.
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [Abstract] [Full Text] [Related]

  • 11. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.
    Thompson J.
    J Bacteriol; 1978 Nov; 136(2):465-76. PubMed ID: 101523
    [Abstract] [Full Text] [Related]

  • 12. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR, McKay LL.
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [Abstract] [Full Text] [Related]

  • 13. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci.
    McKay LL, Walter LA, Sandine WE, Elliker PR.
    J Bacteriol; 1969 Aug; 99(2):603-10. PubMed ID: 5808082
    [Abstract] [Full Text] [Related]

  • 14. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J, Chassy BM.
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ, Reizer J, Cui X, Saier MH.
    J Biol Chem; 1994 Apr 22; 269(16):11837-44. PubMed ID: 8163482
    [Abstract] [Full Text] [Related]

  • 16. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J, Chassy BM.
    J Bacteriol; 1982 Sep 22; 151(3):1454-65. PubMed ID: 6286601
    [Abstract] [Full Text] [Related]

  • 17. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL, Davey GP, Pearce LE, Thomas TD.
    J Bacteriol; 1983 Jan 22; 153(1):76-83. PubMed ID: 6294064
    [Abstract] [Full Text] [Related]

  • 18. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ, Reizer J, Saier MH.
    Microbiology (Reading); 1994 Dec 22; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [Abstract] [Full Text] [Related]

  • 19. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ, Crow VL, Lee LN, Garon CF.
    J Bacteriol; 1979 Feb 22; 137(2):878-84. PubMed ID: 106044
    [Abstract] [Full Text] [Related]

  • 20. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C, Koebmann B, Jensen PR.
    Biotechnol Appl Biochem; 2008 May 22; 50(Pt 1):35-40. PubMed ID: 17822381
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.