These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 11818330

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH, Hirabara SM, Silveira Ldos R, Levada-Pires AC, Curi R, Pithon-Curi TC.
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [Abstract] [Full Text] [Related]

  • 8. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy.
    Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T, Tsujioka K, Makino H, Kashihara N.
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247
    [Abstract] [Full Text] [Related]

  • 9. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species.
    Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R.
    J Hypertens; 2006 Apr; 24(4):757-66. PubMed ID: 16531806
    [Abstract] [Full Text] [Related]

  • 10. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM, Shah AM.
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington's disease in rats: protective role of apocynin.
    Maldonado PD, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J.
    J Neurosci Res; 2010 Feb 15; 88(3):620-9. PubMed ID: 19795371
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Disruption of skeletal myocytes initiates superoxide release: contribution of NADPH oxidase.
    Kerkweg U, Petrat F, Korth HG, de Groot H.
    Shock; 2007 May 15; 27(5):552-8. PubMed ID: 17438461
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
    Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F.
    Eur J Pharmacol; 2005 Mar 21; 511(1):53-64. PubMed ID: 15777779
    [Abstract] [Full Text] [Related]

  • 18. Coronary artery superoxide production and nox isoform expression in human coronary artery disease.
    Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG, Channon KM.
    Arterioscler Thromb Vasc Biol; 2006 Feb 21; 26(2):333-9. PubMed ID: 16293794
    [Abstract] [Full Text] [Related]

  • 19. Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice.
    Harrison CB, Drummond GR, Sobey CG, Selemidis S.
    Clin Exp Pharmacol Physiol; 2010 Apr 21; 37(4):429-34. PubMed ID: 19843095
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.