These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 11819049

  • 21. Gait acts as a gate for reflexes from the foot.
    Duysens J, Bastiaanse CM, Smits-Engelsman BC, Dietz V.
    Can J Physiol Pharmacol; 2004; 82(8-9):715-22. PubMed ID: 15523528
    [Abstract] [Full Text] [Related]

  • 22. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking.
    Iglesias C, Nielsen JB, Marchand-Pauvert V.
    Exp Brain Res; 2008 Jun; 188(1):101-10. PubMed ID: 18340438
    [Abstract] [Full Text] [Related]

  • 23. Vibration-induced changes in EMG during human locomotion.
    Verschueren SM, Swinnen SP, Desloovere K, Duysens J.
    J Neurophysiol; 2003 Mar; 89(3):1299-307. PubMed ID: 12626612
    [Abstract] [Full Text] [Related]

  • 24. Posture-related changes in heteronymous recurrent inhibition from quadriceps to ankle muscles in humans.
    Barbeau H, Marchand-Pauvert V, Meunier S, Nicolas G, Pierrot-Deseilligny E.
    Exp Brain Res; 2000 Feb; 130(3):345-61. PubMed ID: 10706434
    [Abstract] [Full Text] [Related]

  • 25. Enhanced spinal excitation from ankle flexors to knee extensors during walking in stroke patients.
    Achache V, Mazevet D, Iglesias C, Lackmy A, Nielsen JB, Katz R, Marchand-Pauvert V.
    Clin Neurophysiol; 2010 Jun; 121(6):930-8. PubMed ID: 20153246
    [Abstract] [Full Text] [Related]

  • 26. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing.
    Suzuki S, Nakajima T, Futatsubashi G, Mezzarane RA, Ohtsuka H, Ohki Y, Zehr EP, Komiyama T.
    Exp Brain Res; 2016 Aug; 234(8):2293-304. PubMed ID: 27030502
    [Abstract] [Full Text] [Related]

  • 27. Arm cycling increases the short-latency reflex from ankle dorsiflexor afferents to knee extensor muscles.
    Sasada S, Tazoe T, Nakajima T, Omori S, Futatsubashi G, Komiyama T.
    J Neurophysiol; 2021 Jan 01; 125(1):110-119. PubMed ID: 33146064
    [Abstract] [Full Text] [Related]

  • 28. The bilateral reflex control of the trapezius muscle in humans.
    Alexander CM, Harrison PJ.
    Exp Brain Res; 2002 Feb 01; 142(3):418-24. PubMed ID: 11819051
    [Abstract] [Full Text] [Related]

  • 29. Phase modulation of the short-latency crossed spinal response in the human soleus muscle.
    Stubbs PW, Nielsen JF, Sinkjær T, Mrachacz-Kersting N.
    J Neurophysiol; 2011 Feb 01; 105(2):503-11. PubMed ID: 21106895
    [Abstract] [Full Text] [Related]

  • 30. Phase-dependent modulation of short latency cutaneous reflexes during walking in man.
    Baken BC, Dietz V, Duysens J.
    Brain Res; 2005 Jan 21; 1031(2):268-75. PubMed ID: 15649452
    [Abstract] [Full Text] [Related]

  • 31. Increase in group II excitation from ankle muscles to thigh motoneurones during human standing.
    Marchand-Pauvert V, Nicolas G, Marque P, Iglesias C, Pierrot-Deseilligny E.
    J Physiol; 2005 Jul 01; 566(Pt 1):257-71. PubMed ID: 15860524
    [Abstract] [Full Text] [Related]

  • 32. Regionally distinct cutaneous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking.
    Nakajima T, Suzuki S, Futatsubashi G, Ohtsuska H, Mezzarane RA, Barss TS, Klarner T, Zehr EP, Komiyama T.
    J Neurophysiol; 2016 Jul 01; 116(1):183-90. PubMed ID: 27075541
    [Abstract] [Full Text] [Related]

  • 33. Cortical and spinal control of ankle joint muscles before and during gait initiation.
    Hiraoka K, Abe K.
    Somatosens Mot Res; 2007 Sep 01; 24(3):127-33. PubMed ID: 17853055
    [Abstract] [Full Text] [Related]

  • 34. The effect of transcranial magnetic stimulation on reciprocal inhibition in the human leg.
    Masakado Y, Muraoka Y, Tomita Y, Chino N.
    Electromyogr Clin Neurophysiol; 2001 Sep 01; 41(7):429-32. PubMed ID: 11721298
    [Abstract] [Full Text] [Related]

  • 35. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb.
    Khan SI, Burne JA.
    Brain Res; 2010 Jan 13; 1308():47-57. PubMed ID: 19850015
    [Abstract] [Full Text] [Related]

  • 36. Experimental muscle pain decreases voluntary EMG activity but does not affect the muscle potential evoked by transcutaneous electrical stimulation.
    Farina D, Arendt-Nielsen L, Graven-Nielsen T.
    Clin Neurophysiol; 2005 Jul 13; 116(7):1558-65. PubMed ID: 15907396
    [Abstract] [Full Text] [Related]

  • 37. Modulations of soleus H-reflex excitability during gait initiation: central versus peripheral influences.
    Trimble MH, Brunt D, Jeon HS, Kim HD.
    Muscle Nerve; 2001 Oct 13; 24(10):1371-9. PubMed ID: 11562919
    [Abstract] [Full Text] [Related]

  • 38. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A, Stein RB.
    Exp Brain Res; 2004 Dec 13; 159(4):491-500. PubMed ID: 15243732
    [Abstract] [Full Text] [Related]

  • 39. Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans.
    Marque P, Nicolas G, Marchand-Pauvert V, Gautier J, Simonetta-Moreau M, Pierrot-Deseilligny E.
    J Physiol; 2001 Oct 01; 536(Pt 1):313-27. PubMed ID: 11579179
    [Abstract] [Full Text] [Related]

  • 40. Surface EMG recording of heteronymous reflex excitation of semitendinosus motoneurones by group II afferents.
    Roujeau T, Decq P, Lefaucheur JP.
    Clin Neurophysiol; 2004 Jun 01; 115(6):1313-9. PubMed ID: 15134698
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.