These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 1182144
1. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y. Biochim Biophys Acta; 1975 Sep 02; 401(3):364-9. PubMed ID: 1182144 [Abstract] [Full Text] [Related]
2. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H. Biochim Biophys Acta; 1978 Jan 04; 506(1):119-35. PubMed ID: 620020 [Abstract] [Full Text] [Related]
3. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Baker GF, Naftalin RJ. Biochim Biophys Acta; 1979 Feb 02; 550(3):474-84. PubMed ID: 420829 [Abstract] [Full Text] [Related]
4. Effects of temperature on the transport of galactose in human erythrocytes. Ginsburg H, Yeroushalmy S. J Physiol; 1978 Sep 02; 282():399-417. PubMed ID: 722542 [Abstract] [Full Text] [Related]
5. Effects of erythrocyte lipid and of glucose and galactose concentration on transport of the sugars across a water-butanol interface. Moore TJ, Schlowsky B. J Lipid Res; 1969 Mar 02; 10(2):216-9. PubMed ID: 5782359 [Abstract] [Full Text] [Related]
6. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes]. Geck P. Biochim Biophys Acta; 1971 Aug 13; 241(2):462-72. PubMed ID: 5159793 [No Abstract] [Full Text] [Related]
7. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL, Carruthers A. Biochemistry; 1989 May 30; 28(11):4580-94. PubMed ID: 2765504 [Abstract] [Full Text] [Related]
8. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Ginsburg H, Ram D. Biochim Biophys Acta; 1975 Mar 25; 382(3):369-76. PubMed ID: 1125239 [Abstract] [Full Text] [Related]
9. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Eilam Y, Stein WD. Biochim Biophys Acta; 1972 Apr 14; 266(1):161-73. PubMed ID: 5041086 [No Abstract] [Full Text] [Related]
10. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes. Miller DM. Biophys J; 1965 Jul 14; 5(4):407-15. PubMed ID: 5861699 [Abstract] [Full Text] [Related]
11. The mechanism of sugar transfer across erythrocyte membranes. Stein WD. Ann N Y Acad Sci; 1972 Jun 20; 195():412-28. PubMed ID: 4504102 [No Abstract] [Full Text] [Related]
12. An alternative to the carrier model for sugar transport across red cell membranes. Naftalin RJ. Biomembranes; 1972 Jun 20; 3():117-26. PubMed ID: 4666509 [No Abstract] [Full Text] [Related]
13. A model for sugar transport across red cell membranes without carriers. Naftalin RJ. Biochim Biophys Acta; 1970 Jul 07; 211(1):65-78. PubMed ID: 5470389 [No Abstract] [Full Text] [Related]
14. A kinetic analysis of L-tryptophan transport in human red blood cells. Rosenberg R. Biochim Biophys Acta; 1981 Dec 07; 649(2):262-8. PubMed ID: 7317397 [Abstract] [Full Text] [Related]
15. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system. Miller DM. Biophys J; 1971 Nov 07; 11(11):915-23. PubMed ID: 5113002 [Abstract] [Full Text] [Related]
16. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]