These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Metabolic engineering study on the direct fermentation of 2-keto-L-gulonic acid, a key intermediate of L-ascorbic acid in Pseudomonas putida IFO3738. Shibata T, Ichikawa C, Matsuura M, Takata Y, Noguchi Y, Saito Y, Yamashita M. J Biosci Bioeng; 2000; 90(2):223-5. PubMed ID: 16232848 [Abstract] [Full Text] [Related]
26. Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid. Miyazaki T, Sugisawa T, Hoshino T. Appl Environ Microbiol; 2006 Feb; 72(2):1487-95. PubMed ID: 16461703 [Abstract] [Full Text] [Related]
27. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy]. Zhang J, Zhou J, Liu L, Liu J, Chen K, Du G, Chen J. Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117 [Abstract] [Full Text] [Related]
28. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z. J Appl Microbiol; 2004 Sep; 96(6):1317-23. PubMed ID: 15139924 [Abstract] [Full Text] [Related]
29. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J. Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618 [Abstract] [Full Text] [Related]
30. Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid. Cai L, Yuan MQ, Li ZJ, Chen JC, Chen GQ. J Biotechnol; 2012 Jan 20; 157(2):320-5. PubMed ID: 22192513 [Abstract] [Full Text] [Related]
32. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. Liu L, Chen K, Zhang J, Liu J, Chen J. J Biotechnol; 2011 Dec 10; 156(3):182-7. PubMed ID: 21924300 [Abstract] [Full Text] [Related]
33. New developments in oxidative fermentation. Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K. Appl Microbiol Biotechnol; 2003 Feb 10; 60(6):643-53. PubMed ID: 12664142 [Abstract] [Full Text] [Related]
34. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization. Greenberg JR, Price NP, Oliver RP, Sherman F, Rustchenko E. Yeast; 2005 Sep 10; 22(12):957-69. PubMed ID: 16134116 [Abstract] [Full Text] [Related]
36. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K. Appl Environ Microbiol; 1997 Feb 10; 63(2):454-60. PubMed ID: 9023923 [Abstract] [Full Text] [Related]
37. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation. Mandlaa, Yang W, Liu C, Xu H. J Ind Microbiol Biotechnol; 2015 Jun 10; 42(6):897-904. PubMed ID: 25860124 [Abstract] [Full Text] [Related]
38. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. Appl Microbiol Biotechnol; 2006 Nov 10; 73(2):443-51. PubMed ID: 16820953 [Abstract] [Full Text] [Related]