These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 11824498

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. A comparison of habitual and derived optimal voice fundamental frequency values in normal young adult speakers.
    Britto AI, Doyle PC.
    J Speech Hear Disord; 1990 Aug; 55(3):476-84. PubMed ID: 2381189
    [Abstract] [Full Text] [Related]

  • 25. Ambulatory monitoring of disordered voices.
    Hillman RE, Heaton JT, Masaki A, Zeitels SM, Cheyne HA.
    Ann Otol Rhinol Laryngol; 2006 Nov; 115(11):795-801. PubMed ID: 17165660
    [Abstract] [Full Text] [Related]

  • 26. Teachers' voice use in teaching environments: a field study using ambulatory phonation monitor.
    Lyberg Åhlander V, Pelegrín García D, Whitling S, Rydell R, Löfqvist A.
    J Voice; 2014 Nov; 28(6):841.e5-15. PubMed ID: 24962227
    [Abstract] [Full Text] [Related]

  • 27. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J, Titze I, Scherer R.
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [Abstract] [Full Text] [Related]

  • 28. Speech Adjustments for Room Acoustics and Their Effects on Vocal Effort.
    Bottalico P.
    J Voice; 2017 May; 31(3):392.e1-392.e12. PubMed ID: 28029555
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Fundamental frequency, sound pressure level and vocal dose of a vocal loading test in comparison to a real teaching situation.
    Echternach M, Nusseck M, Dippold S, Spahn C, Richter B.
    Eur Arch Otorhinolaryngol; 2014 Dec; 271(12):3263-8. PubMed ID: 25012705
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR, Pickering J, Stemple J, Donohue KD.
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [Abstract] [Full Text] [Related]

  • 34. The impact of extended voice use on the acoustic characteristics of phonation after training and performance of actors from the La MaMa Experimental Theater club.
    Ferrone C, Galgano J, Ramig LO.
    J Voice; 2011 May; 25(3):e123-37. PubMed ID: 20381306
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O, Lohscheller J, Doellinger M, Eysholdt U, Hoppe U.
    Folia Phoniatr Logop; 2006 May; 58(3):175-85. PubMed ID: 16636565
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Investigation of voice initiation and voice offset characteristics with high-speed digital imaging.
    Kunduk M, Yan Y, McWhorter AJ, Bless D.
    Logoped Phoniatr Vocol; 2006 May; 31(3):139-44. PubMed ID: 16966156
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.