These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 1182777
1. Indoleamines and the eccentric cells of the limulus lateral eye. Adolph A, Ehinger B. Cell Tissue Res; 1975 Nov 17; 163(1):1-14. PubMed ID: 1182777 [Abstract] [Full Text] [Related]
2. Ultrastructure within the lateral plexus of the Limulus eye. Gur M, Purple RL, Whitehead R. J Gen Physiol; 1972 Mar 17; 59(3):285-304. PubMed ID: 5058961 [Abstract] [Full Text] [Related]
3. A histochemical study of the cells of the ventral cord ganglia of the horseshoe crab, Limulus polyphemus (L.). Bursey CR. Z Zellforsch Mikrosk Anat; 1973 Dec 31; 146(1):1-14. PubMed ID: 4130295 [No Abstract] [Full Text] [Related]
4. Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Fahrenbach WH. Proc R Soc Lond B Biol Sci; 1985 Aug 22; 225(1239):219-49. PubMed ID: 2864695 [Abstract] [Full Text] [Related]
5. Microspectrofluorimetric analysis of the formaldehyde induced fluorescence in midbrain raphe neurons. Jonsson G, Einarsson P, Fuxe K, Hallman H. Med Biol; 1975 Feb 22; 53(1):25-39. PubMed ID: 124804 [Abstract] [Full Text] [Related]
6. The morphology of the Limulus visual system. VI. Connectivity in the ocellus. Fahrenbach WH, Griffin AJ. Cell Tissue Res; 1975 May 27; 159(1):39-47. PubMed ID: 1149089 [Abstract] [Full Text] [Related]
7. Quantitative aspects of the eccentric cell dendrite of the lateral eye of Limulus. Cohen HA. J Neurocytol; 1973 Dec 27; 2(4):429-39. PubMed ID: 4784779 [No Abstract] [Full Text] [Related]
8. Evolution of arthropod visual systems: development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Harzsch S, Vilpoux K, Blackburn DC, Platchetzki D, Brown NL, Melzer R, Kempler KE, Battelle BA. Dev Dyn; 2006 Oct 27; 235(10):2641-55. PubMed ID: 16788994 [Abstract] [Full Text] [Related]
9. The histochemical demonstration of catecholamines and tryptamines by acid- and aldehyde-induced fluorescence: microspectrofluorometric characterization of the fluorophores in models. Ewen SW, Rost FW. Histochem J; 1972 Jan 27; 4(1):59-69. PubMed ID: 4537023 [No Abstract] [Full Text] [Related]
10. [Monoamines in the pineal organ and the parietal eye of Lacerta vivipara. A fluorescence microscopic and microspectrofluorometric study (author's transl)]. Meiniel A, Collin JP, Hartwig HG. Z Zellforsch Mikrosk Anat; 1973 Oct 30; 144(1):89-115. PubMed ID: 4770092 [No Abstract] [Full Text] [Related]
11. Indoleamine-accumulating neurons in the retina of rabbit, cat and goldfish. Ehinger B, Florén I. Cell Tissue Res; 1976 Nov 24; 175(1):37-48. PubMed ID: 1000596 [Abstract] [Full Text] [Related]
12. Histochemical localization of monoamines in the crab central nervous system. Goldstone MW, Cooke IM. Z Zellforsch Mikrosk Anat; 1971 Nov 24; 116(1):7-19. PubMed ID: 5575141 [No Abstract] [Full Text] [Related]
13. A modification of the Falck-Hillarp technique for 5-HT fluorescence employing hypertonic formaldehyde perfusion. Azmitia EC, Henriksen SJ. J Histochem Cytochem; 1976 Dec 24; 24(12):1286-8. PubMed ID: 1002978 [No Abstract] [Full Text] [Related]
14. Retinular and eccentric cell morphology in the neural plexus of Limulus lateral eye. Schwartz EA. J Neurobiol; 1971 Dec 24; 2(2):129-33. PubMed ID: 4110583 [No Abstract] [Full Text] [Related]
15. Microspectrofluorimetric studies on central 5-hydroxytryptamine neurons. Jonsson G, Einarsson P, Fuxe K, Hallman H. Adv Biochem Psychopharmacol; 1974 Dec 24; 10():55-65. PubMed ID: 4276959 [No Abstract] [Full Text] [Related]