These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 11837697
1. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters. Putnam WS, Pan L, Tsutsui K, Takahashi L, Benet LZ. Pharm Res; 2002 Jan; 19(1):27-33. PubMed ID: 11837697 [Abstract] [Full Text] [Related]
2. Apical-to-basolateral transepithelial transport of Ochratoxin A by two subtypes of Madin-Darby canine kidney cells. Schwerdt G, Gekle M, Freudinger R, Mildenberger S, Silbernagl S. Biochim Biophys Acta; 1997 Mar 13; 1324(2):191-9. PubMed ID: 9092706 [Abstract] [Full Text] [Related]
3. Functional characterization of monocarboxylic acid, large neutral amino acid, bile acid and peptide transporters, and P-glycoprotein in MDCK and Caco-2 cells. Putnam WS, Ramanathan S, Pan L, Takahashi LH, Benet LZ. J Pharm Sci; 2002 Dec 13; 91(12):2622-35. PubMed ID: 12434407 [Abstract] [Full Text] [Related]
4. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Thwaites DT, Brown CD, Hirst BH, Simmons NL. Biochim Biophys Acta; 1993 Sep 19; 1151(2):237-45. PubMed ID: 8373798 [Abstract] [Full Text] [Related]
5. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells. Sawada K, Terada T, Saito H, Inui K. Pflugers Arch; 2001 Oct 19; 443(1):31-7. PubMed ID: 11692263 [Abstract] [Full Text] [Related]
6. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Tamura K, Lee CP, Smith PL, Borchardt RT. Pharm Res; 1996 Nov 19; 13(11):1663-7. PubMed ID: 8956331 [Abstract] [Full Text] [Related]
7. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. Li J, Wang Y, Zhang W, Huang Y, Hein K, Hidalgo IJ. Drug Metab Dispos; 2012 Nov 19; 40(11):2102-8. PubMed ID: 22855735 [Abstract] [Full Text] [Related]
8. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Madgula VL, Avula B, Reddy V L N, Khan IA, Khan SI. Planta Med; 2007 Apr 19; 73(4):330-5. PubMed ID: 17372866 [Abstract] [Full Text] [Related]
9. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. de Souza J, Benet LZ, Huang Y, Storpirtis S. J Pharm Sci; 2009 Nov 19; 98(11):4413-9. PubMed ID: 19472342 [Abstract] [Full Text] [Related]
10. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, Gudmundsson OS, Knipp G. J Pharmacol Exp Ther; 2005 Sep 19; 314(3):1093-100. PubMed ID: 15901802 [Abstract] [Full Text] [Related]
11. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR. J Pharm Sci; 1999 Jan 19; 88(1):28-33. PubMed ID: 9874698 [Abstract] [Full Text] [Related]
12. Characterization of P-glycoprotein mediated transport of K02, a novel vinylsulfone peptidomimetic cysteine protease inhibitor, across MDR1-MDCK and Caco-2 cell monolayers. Zhang Y, Benet LZ. Pharm Res; 1998 Oct 19; 15(10):1520-4. PubMed ID: 9794492 [Abstract] [Full Text] [Related]
13. Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers. Bertelsen KM, Greenblatt DJ, von Moltke LL. Biopharm Drug Dispos; 2006 Jul 19; 27(5):219-27. PubMed ID: 16552717 [Abstract] [Full Text] [Related]
14. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Taub ME, Podila L, Ely D, Almeida I. Drug Metab Dispos; 2005 Nov 19; 33(11):1679-87. PubMed ID: 16093365 [Abstract] [Full Text] [Related]
16. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. Inui K, Yamamoto M, Saito H. J Pharmacol Exp Ther; 1992 Apr 19; 261(1):195-201. PubMed ID: 1560365 [Abstract] [Full Text] [Related]
17. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin-Darby canine kidney cell monolayers. Siccardi D, Kandalaft LE, Gumbleton M, McGuigan C. J Pharmacol Exp Ther; 2003 Dec 19; 307(3):1112-9. PubMed ID: 14557377 [Abstract] [Full Text] [Related]
18. Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management. Sun BW, Zhao XC, Wang GJ, Li N, Li JS. World J Gastroenterol; 2003 Apr 19; 9(4):808-12. PubMed ID: 12679938 [Abstract] [Full Text] [Related]
19. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells. Hsu CP, Walter E, Merkle HP, Rothen-Rutishauser B, Wunderli-Allenspach H, Hilfinger JM, Amidon GL. AAPS PharmSci; 1999 Apr 19; 1(3):E12. PubMed ID: 11741208 [Abstract] [Full Text] [Related]
20. Functional expression of novel peptide transporter in renal basolateral membranes. Terada T, Sawada K, Ito T, Saito H, Hashimoto Y, Inui K. Am J Physiol Renal Physiol; 2000 Nov 19; 279(5):F851-7. PubMed ID: 11053045 [Abstract] [Full Text] [Related] Page: [Next] [New Search]