These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
572 related items for PubMed ID: 11843445
1. Fracture resistance of all-ceramic and metal-ceramic inlays. Esquivel-Upshaw JF, Anusavice KJ, Yang MC, Lee RB. Int J Prosthodont; 2001; 14(2):109-14. PubMed ID: 11843445 [Abstract] [Full Text] [Related]
2. Dentin bond strengths of two ceramic inlay systems after cementation with three different techniques and one bonding system. Ozturk N, Aykent F. J Prosthet Dent; 2003 Mar; 89(3):275-81. PubMed ID: 12644803 [Abstract] [Full Text] [Related]
3. Effect of mouth-motion fatigue and thermal cycling on the marginal accuracy of partial coverage restorations made of various dental materials. Stappert CF, Chitmongkolsuk S, Silva NR, Att W, Strub JR. Dent Mater; 2008 Sep; 24(9):1248-57. PubMed ID: 18395785 [Abstract] [Full Text] [Related]
4. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. Soares CJ, Martins LR, Fonseca RB, Correr-Sobrinho L, Fernandes Neto AJ. J Prosthet Dent; 2006 Jun; 95(6):421-9. PubMed ID: 16765154 [Abstract] [Full Text] [Related]
5. The influence of incisal veneering porcelain thickness of two metal ceramic crown systems on failure resistance after cyclic loading. Geminiani A, Lee H, Feng C, Ercoli C. J Prosthet Dent; 2010 May; 103(5):275-82. PubMed ID: 20416410 [Abstract] [Full Text] [Related]
7. All-ceramic partial coverage restorations on natural molars. Masticatory fatigue loading and fracture resistance. Stappert CF, Guess PC, Chitmongkolsuk S, Gerds T, Strub JR. Am J Dent; 2007 Feb; 20(1):21-6. PubMed ID: 17380803 [Abstract] [Full Text] [Related]
8. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Vásquez VZ, Ozcan M, Kimpara ET. Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654 [Abstract] [Full Text] [Related]
9. A randomized 5-year clinical evaluation of 3 ceramic inlay systems. Molin MK, Karlsson SL. Int J Prosthodont; 2000 Feb; 13(3):194-200. PubMed ID: 11203631 [Abstract] [Full Text] [Related]
10. Fracture strength of all-ceramic lithium disilicate and porcelain-fused-to-metal bridges for molar replacement after dynamic loading. Chitmongkolsuk S, Heydecke G, Stappert C, Strub JR. Eur J Prosthodont Restor Dent; 2002 Mar; 10(1):15-22. PubMed ID: 12051127 [Abstract] [Full Text] [Related]
11. Fracture resistance of metal- and galvano-ceramic crowns cemented with different luting cements: in vitro comparative study. Ghazy MH, Madina MM. Int J Prosthodont; 2006 Mar; 19(6):610-2. PubMed ID: 17165302 [Abstract] [Full Text] [Related]
12. Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Clausen JO, Abou Tara M, Kern M. Dent Mater; 2010 Jun; 26(6):533-8. PubMed ID: 20181388 [Abstract] [Full Text] [Related]
13. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. Dejak B, Mlotkowski A. J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014 [Abstract] [Full Text] [Related]
14. Marginal gap, internal fit, and fracture load of leucite-reinforced ceramic inlays fabricated by CEREC inLab and hot-pressed techniques. Keshvad A, Hooshmand T, Asefzadeh F, Khalilinejad F, Alihemmati M, Van Noort R. J Prosthodont; 2011 Oct; 20(7):535-40. PubMed ID: 21806704 [Abstract] [Full Text] [Related]
15. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Int J Prosthodont; 2001 Oct; 14(3):231-8. PubMed ID: 11484570 [Abstract] [Full Text] [Related]
16. Bonding indirect resin composites to metal: Part 1. Comparison of shear bond strengths between different metal-resin bonding systems and a metal-ceramic system. Petridis H, Garefis P, Hirayama H, Kafantaris NM, Koidis PT. Int J Prosthodont; 2003 Oct; 16(6):635-9. PubMed ID: 14714844 [Abstract] [Full Text] [Related]
17. The influence of different cements on the fracture resistance and marginal adaptation of all-ceramic and fiber-reinforced crowns. Behr M, Rosentritt M, Mangelkramer M, Handel G. Int J Prosthodont; 2003 Oct; 16(5):538-42. PubMed ID: 14651242 [Abstract] [Full Text] [Related]
18. Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols. Heintze SD, Cavalleri A, Zellweger G, Büchler A, Zappini G. Dent Mater; 2008 Oct; 24(10):1352-61. PubMed ID: 18433859 [Abstract] [Full Text] [Related]
19. Fracture resistance of teeth restored with indirect-composite and ceramic inlay systems. Soares CJ, Martins LR, Pfeifer JM, Giannini M. Quintessence Int; 2004 Apr; 35(4):281-6. PubMed ID: 15119713 [Abstract] [Full Text] [Related]
20. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study. Al-Wahadni AM, Hussey DL, Grey N, Hatamleh MM. J Contemp Dent Pract; 2009 Mar 01; 10(2):51-8. PubMed ID: 19279972 [Abstract] [Full Text] [Related] Page: [Next] [New Search]