These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. J Mol Biol; 2001 Nov 30; 314(3):563-75. PubMed ID: 11846567 [Abstract] [Full Text] [Related]
3. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. Liao H, Yuan C, Su MI, Yongkiettrakul S, Qin D, Li H, Byeon IJ, Pei D, Tsai MD. J Mol Biol; 2000 Dec 15; 304(5):941-51. PubMed ID: 11124038 [Abstract] [Full Text] [Related]
6. Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. Liao H, Byeon IJ, Tsai MD. J Mol Biol; 1999 Dec 10; 294(4):1041-9. PubMed ID: 10588905 [Abstract] [Full Text] [Related]
7. Location-specific functions of the two forkhead-associated domains in Rad53 checkpoint kinase signaling. Tam AT, Pike BL, Heierhorst J. Biochemistry; 2008 Mar 25; 47(12):3912-6. PubMed ID: 18302321 [Abstract] [Full Text] [Related]
8. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain. Pike BL, Tenis N, Heierhorst J. J Biol Chem; 2004 Sep 17; 279(38):39636-44. PubMed ID: 15271990 [Abstract] [Full Text] [Related]
9. Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction. Jiao Y, Seeger K, Lautrette A, Gaubert A, Mousson F, Guerois R, Mann C, Ochsenbein F. Proc Natl Acad Sci U S A; 2012 Feb 21; 109(8):2866-71. PubMed ID: 22323608 [Abstract] [Full Text] [Related]
11. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Lee H, Yuan C, Hammet A, Mahajan A, Chen ES, Wu MR, Su MI, Heierhorst J, Tsai MD. Mol Cell; 2008 Jun 20; 30(6):767-78. PubMed ID: 18570878 [Abstract] [Full Text] [Related]
12. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae. Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M. Genetics; 2013 Jun 20; 194(2):389-401. PubMed ID: 23564203 [Abstract] [Full Text] [Related]
16. Role of the N-terminal forkhead-associated domain in the cell cycle checkpoint function of the Rad53 kinase. Pike BL, Hammet A, Heierhorst J. J Biol Chem; 2001 Apr 27; 276(17):14019-26. PubMed ID: 11278522 [Abstract] [Full Text] [Related]
17. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Mol Cell Proteomics; 2014 Feb 27; 13(2):551-65. PubMed ID: 24302356 [Abstract] [Full Text] [Related]
18. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J. J Biol Chem; 2003 Aug 15; 278(33):30421-4. PubMed ID: 12805372 [Abstract] [Full Text] [Related]
19. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40. Wiesner S, Stier G, Sattler M, Macias MJ. J Mol Biol; 2002 Dec 06; 324(4):807-22. PubMed ID: 12460579 [Abstract] [Full Text] [Related]
20. Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope. Pires JR, Taha-Nejad F, Toepert F, Ast T, Hoffmüller U, Schneider-Mergener J, Kühne R, Macias MJ, Oschkinat H. J Mol Biol; 2001 Dec 14; 314(5):1147-56. PubMed ID: 11743730 [Abstract] [Full Text] [Related] Page: [Next] [New Search]