These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 11872913

  • 1. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T, Dietrich HH, Hongo K, Goto T, Dacey RG.
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [Abstract] [Full Text] [Related]

  • 2. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U, Vogt J, Schuh-Hofer S, Dreier JP, Dirnagl U.
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [Abstract] [Full Text] [Related]

  • 3. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle.
    Ishizaka H, Kuo L.
    Circ Res; 1996 Jan; 78(1):50-7. PubMed ID: 8603505
    [Abstract] [Full Text] [Related]

  • 4. Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem.
    Horiuchi T, Dietrich HH, Tsugane S, Dacey RG.
    Stroke; 2001 Jan; 32(1):218-24. PubMed ID: 11136940
    [Abstract] [Full Text] [Related]

  • 5. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels.
    Nagaoka T, Hein TW, Yoshida A, Kuo L.
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4232-9. PubMed ID: 17724212
    [Abstract] [Full Text] [Related]

  • 6. Mechanism of extracellular K+-induced local and conducted responses in cerebral penetrating arterioles.
    Horiuchi T, Dietrich HH, Hongo K, Dacey RG.
    Stroke; 2002 Nov; 33(11):2692-9. PubMed ID: 12411663
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins.
    Ishizaka H, Gudi SR, Frangos JA, Kuo L.
    Circulation; 1999 Feb 02; 99(4):558-63. PubMed ID: 9927404
    [Abstract] [Full Text] [Related]

  • 9. Re: Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Rosenblum WI.
    Stroke; 2002 Jul 02; 33(7):1742-3; author reply 1742-3. PubMed ID: 12105339
    [No Abstract] [Full Text] [Related]

  • 10. Ropivacaine-induced contraction is attenuated by both endothelial nitric oxide and voltage-dependent potassium channels in isolated rat aortae.
    Ok SH, Han JY, Sung HJ, Yang SM, Park J, Kwon SC, Choi MJ, Sohn JT.
    Biomed Res Int; 2013 Jul 02; 2013():565271. PubMed ID: 24350275
    [Abstract] [Full Text] [Related]

  • 11. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H, Liu Y, Gutterman DD.
    Circulation; 1999 Jun 22; 99(24):3132-8. PubMed ID: 10377076
    [Abstract] [Full Text] [Related]

  • 12. P2u receptor-mediated release of endothelium-derived relaxing factor/nitric oxide and endothelium-derived hyperpolarizing factor from cerebrovascular endothelium in rats.
    You J, Johnson TD, Marrelli SP, Mombouli JV, Bryan RM.
    Stroke; 1999 May 22; 30(5):1125-33. PubMed ID: 10229754
    [Abstract] [Full Text] [Related]

  • 13. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.
    Wang X, Loutzenhiser R.
    Am J Physiol Renal Physiol; 2002 Jan 22; 282(1):F124-32. PubMed ID: 11739120
    [Abstract] [Full Text] [Related]

  • 14. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis.
    Kinoshita H, Katusic ZS.
    Stroke; 1997 Feb 22; 28(2):433-7; discussion 437-8. PubMed ID: 9040702
    [Abstract] [Full Text] [Related]

  • 15. Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles.
    Murata T, Dietrich HH, Horiuchi T, Hongo K, Dacey RG.
    Neurosci Res; 2016 Jun 22; 107():57-62. PubMed ID: 26712324
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles.
    Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG.
    J Vasc Res; 2009 Jun 22; 46(3):253-64. PubMed ID: 18984964
    [Abstract] [Full Text] [Related]

  • 17. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels.
    Dabertrand F, Nelson MT, Brayden JE.
    Circ Res; 2012 Jan 20; 110(2):285-94. PubMed ID: 22095728
    [Abstract] [Full Text] [Related]

  • 18. Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A₂A receptor activation.
    Hein TW, Xu W, Ren Y, Kuo L.
    Cardiovasc Res; 2013 Jul 01; 99(1):156-63. PubMed ID: 23539502
    [Abstract] [Full Text] [Related]

  • 19. Arteriolar diameter and spontaneous vasomotion: importance of potassium channels and nitric oxide.
    de Souza Md, Bouskela E.
    Microvasc Res; 2013 Nov 01; 90():121-7. PubMed ID: 23948594
    [Abstract] [Full Text] [Related]

  • 20. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H, Kuo L.
    Am J Physiol; 1997 Jul 01; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.